- D
- PHYINET
=

FOURIER SERIES AND INTEGRALS

Vi
FOURIER SERIES AND INTEGRALS
by
E. H. Carlson, Michigan State University
1 1. Introduction ........... ... . 1
2. The Fourier Series
2 a. The Coefficient Equations ....................ccoiuin... 2
b. An Example ... 3
3 c¢. Partial Sum and Formal Definition ...................... 4
4 d. Non-Periodic but Localized Functions ................... 4
5 e. Estimating the Coefficients ........................... ... 4
6 3. The Fourier Integral
0 > X a. Series vs. Integral ....... ... i 9
P b. Transition: Series to Integral ............. .. .. ... .. .. 9
¢. The Continuum Case ..........cooiiiiiiiiiiiiiina... 11
d. Eyeballing the Amplitudes ............................. 11
Acknowledgments ............. ... i 14
A. Some Indefinite Integrals............................... 14
B. A Definite Integral.......... ... ... ... 15

kroject PHYSNETePhysics Bldg.®*Michigan State University®*East Lansing,y




ID Sheet: MISN-0-50

Title: Fourier Series and Integrals

Author: E. H. Carlson, Department of Physics, Michigan State University
Version: 2/1/2000
Length: 1 hr; 24 pages
Input Skills:

Evaluation: Stage 0

1. Compute definite and indefinite integrals of simple functions, in-
cluding sine and cosine functions (MISN-0-1).

2. Understand the definite integral as an area (MISN-0-1).

3. Be familiar with the possibility of expansion of a function in a
power series (MISN-0-4).

Output Skills (Knowledge):

K2. State sufficient conditions for the existence of the Fourier trans-
form of a function.

Output Skills (Rule Application):

R1. Estimate the sizes of the Fourier coefficients by inspection of f(x),
considering its overlap with sine and cosine functions and noting
discontinuities, cusps, peaks, wiggles in f(z) of size ¢, and sym-
metry.

R2. Compute the sine and cosine Fourier transform of a given f(z).

R3. Sketch, by inspection, the Fourier transform of a given f(z).

THIS IS A DEVELOPMENTAL-STAGE PUBLICATION
OF PROJECT PHYSNET

The goal of our project is to assist a network of educators and scientists in
transferring physics from one person to another. We support manuscript
processing and distribution, along with communication and information
systems. We also work with employers to identify basic scientific skills
as well as physics topics that are needed in science and technology. A
number of our publications are aimed at assisting users in acquiring such
skills.

Our publications are designed: (i) to be updated quickly in response to
field tests and new scientific developments; (ii) to be used in both class-
room and professional settings; (iii) to show the prerequisite dependen-
cies existing among the various chunks of physics knowledge and skill,
as a guide both to mental organization and to use of the materials; and
(iv) to be adapted quickly to specific user needs ranging from single-skill
instruction to complete custom textbooks.

New authors, reviewers and field testers are welcome.

PROJECT STAFF

Andrew Schnepp Webmaster
Eugene Kales Graphics
Peter Signell Project Director

ADVISORY COMMITTEE

D. Alan Bromley Yale University
E. Leonard Jossem The Ohio State University
A. A.Strassenburg S.U.N.Y., Stony Brook

Views expressed in a module are those of the module author(s) and are
not necessarily those of other project participants.

(© 2001, Peter Signell for Project PHYSNET, Physics-Astronomy Bldg.,
Mich. State Univ., E. Lansing, MI 48824; (517) 355-3784. For our liberal
use policies see:

http://www.physnet.org/home/modules/license.html.



MISN-0-50 1

FOURIER SERIES AND INTEGRALS
by
E. H. Carlson, Michigan State University

1. Introduction
Suppose you have a function f(z) defined in an interval
—L/2<x<L/2
on the z-axis, as in Fig. 1.

You are probably familiar with the notion that, if f(x) is sufficiently
well behaved, you can expand it in a power series:

fl@)=ay+az+asz+...,

a Taylor Series. It is also possible to expand it in a series of sine and
cosine functions:

2
f(x) = ao + a; cos (277%) + a9 cos (2%%) 4+

2
by sin (271'%) + a9 sin (2%%) +...,

a Fourier Series. Here are the advantages of using a Fourier expansion:

1. Many problems, such as those involving waves and oscillations, are
particularly simple when expressed this way. That is because they

Figure 1. Some
function which we
wish to represent
with an appropriate
series.
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function f(x) hav-
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generally have some periodicity, some interval of x over which f(x)
repeats.

2. The criteria that f(z) must satisfy, in order that the series converge,
are not very stringent. It is sufficient that, in the interval —L/2 <
x < L/2, f(x) is finite and has a finite number of maxima and
minima. It may even have a finite number of discontinuities. These
are called Dirichlet’s conditions.

3. If f(x) is not periodic in z, we can still use the general idea by letting
L — oo, thereby obtaining the Fourier Integral representation:

flx) = /00 [A(k) cos(kx) + B(k) sin(kx)] dk (1)

— 0o

2. The Fourier Series

2a. The Coefficient Equations. We will discuss the relationship
between f(x) and the coefficients ay, by, leaving derivations and proofs
to a mathematics text. The coefficients are defined by the integrals:

L/2
ag = l/ f(z)dx

LJ p
L2
ay = %/_L/Q f(z) cos(2mkx /L) dx (2)

L2

by = I /L/2 f(x)sin(2rkz/L) dz.
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Figure 3. A voltage wave that is input to a filter.

2b. An Example. Fourier Series are useful not only as a computa-
tional tool, for which use Eqns. (2) must be evaluated, but even more so
as a conceptual tool which simplifies the description of f(x) for many
applications. An example is shown in Fig. 3. Here the generator pro-
duces a repetitive time-varying wave form whose voltage across points A,
B is V(t). The voltage across points C, D will be most clearly expressed
when the Fourier Series for V(¢) is known. Write:

V)=V Z(ak coswokt + by, sinwokt).
k=1

If the filter passes only frequencies above some frequency w; then only
voltage Fourier components for which k& > wy /w0 will appear at points
C, D. One will usually begin the analysis of such a physical problem by
inspecting f(z) and seeing which coefficients ag, by are large and which are
small or zero. This gives insight into the solution, guidance in calculating
the series coefficients, and a check on possible gross errors in the solution.
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2c. Partial Sum and Formal Definition. Suppose we keep only the
first 2n + 1 terms in the Fourier Series, as we certainly would do in any
numerical calculation of the coefficients. This defines the “partial sum”

¢:

bn(x) = ag + Y _[an cos(2rkz/L) + by sin(2rkz/L)]. (3)
k=1
The series obtained as n — oo defines the Fourier Series if a; and by are
calculated using the Fourier coefficient equations given below.

3d. Non-Periodic but Localized Functions. For many physical
situations f(x) will be “localized,” i.e., f(z) — 0 as © — +oo. For
example, f(z) may represent a pulse or a wave train of finite dimensions.
Then one can simply pick an interval L so large that it contains essentially
all of f(z), i.e., so that f(z) ~ 0 for |z| > L/2. Then f(x) can be
represented by a Fourier Series inside the interval but not outside the
interval. Outside the interval we abandon the Fourier Series and simply
set f(x) equal to zero.

> Show that the resulting Fourier Series will not correctly represent f(x)
outside the interval.

2e. Estimating the Coeflicients. Here is how professionals estimate
the coefficients to see which are important, which are marginal, and which
are negligible:

1. ag is just the average value of f(x) over the interval.

2. Each ay, by, is proportional to the “overlap” of the corresponding co-
sine or sine function with f(z). That is, when f(z) and cos2nkz/L
are large and positive in the same places, negative or zero in the
same places etc., then ay will be large and positive. (What shape
must f(z) have for a; to be large and negative?) The “overlap”
idea is central to our method for roughly evaluating the integrals of
Eqns. (2), and some particular cases will be discussed in the next
few numbered remarks.

3. Low values of k contribute (through a; and by) to the overall, broad
outline of f(z), while smaller scale structures (wiggles, peaks, etc.)
that occupy a length ¢ < L on the z-axis require contributions
from sine and cosine functions whose wavelength X is near ¢ in size
(A= L/k).
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Figure 4. The overlap is large between f(z) and
cos(2rx/L).  What about the overlap of f(z) with
sin(2rx/L)?

4. If the size of the smallest structure in f(z) is ¢, then ay, by fall off
in size rapidly as k becomes much larger than L/k. The reason can
be seen from Fig. 6.

5. The polynomials ¢,, are periodic in z, so ¢n(x £ mL) = ¢,(x),
where m is an integer. Thus f(x) (which we did not necessarily
define outside of —L/2 < x < L/2) is treated as being periodic.
This may introduce a discontinuity or cusp at the points z = +L/2.
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Figure 5. Coefficients ay, by with k = L/¢ will be relatively
large.
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Figure 6. The integral defining a; has many positive lobes
that are nearly cancelled by the adjacent negative one of
nearly the same size; so the whole integral is small.

6. Discontinuities in f(z) are “structure” whose characteristic dimen-
sion ¢ is zero. They introduce the requirement that ax o< 1/k,
b x 1/k as k — oo, and likewise, “cusps” (where df /dx is discon-
tinuous) give ag, by o< 1/k2.

7. The symmetry of f(x) may simplify the series. A function f(x) is
called “even” if f(z) = f(—=x) and “odd” if f(z) = —f(—z). (What
are the symmetries of sinz, of cosz?) If f(z) is even, only ay’s will
be non zero, if f(x) is odd, only by’s will be non zero. (Why?)

8. The partial sum ¢, (z) is a least squares fit to f(x). The error in
representing f(z) by ¢n(x) is en(z) = f(x) — ¢dn(x). Of all the
possible methods of choosing the coefficients ay, bx, that given by

f(x) =x f(x) =x

Figure 7.

10
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Figure 8. Fourier transform of a step function. f(z) =
—4/m 3 135, (1/k)sin(2rkz/L). Can you explain why

the k-even terms are missing? Hint: sketch-in sin(4wz/L).
Explain why there is a minus sign in front.

Eqns. (2) minimizes the integral I = [ e, (z)|* dx.

9. From the fact that Eqns. (2) do not contain n, we see that when
we approximate f(x) by ¢,(z) and determine the coeflicients ay,
b, k < n, and then decide to make a better approximation ¢,(z),
p > n, the coefficients ag, by for k < n already determined will not
change.

10. A single wave at wavelength A = L/¢ cannot, of course, form the
peak. There must be many other waves of wave lengths near A =

even odd P r(x)
: / N
el N $(x).*
| | EERLN Rl
T ' ! N LT '
N

Figure 9. Which of r, s, t is even, odd, neither? Can one
function be both even and odd?
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Figure 10. The
cosine  functions
are plotted with
4-fold vertical
exaggeration for
clarity.

L /¢ which add to each other at the position of the peak and cancel
each other elsewhere.

12
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the region where x >
0 is shown). Here
be = (2/k) - (~1)F,
ap — 0.

3. The Fourier Integral

3a. Series vs. Integral. If a function f(x) is not periodic or is not
restricted to a finite interval of x, the function cannot be expanded in a
Fourier Series and one must turn to the Fourier Integral. This is equivalent
to letting the period or the localization interval go to infinity so the sum
in the Fourier Series becomes an integral.

3b. Transition: Series to Integral. Here we will make the transition
from the Fourier Series to the Fourier Integral.

For simplicity of derivation, let f(z) be an even function. Assume a
periodicity or locality of length L and suppose we have already obtained
a set of Fourier Series coefficients ap where k = 0, 1, 2, .... We can write
the arguments of the sine and cosine functions as:

kx T T
2 — =27 —— = 27—
T T T

13
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Figure 12. Fourier coeflicients added by going to the larger
interval are marked with crosses.

where A\, = L/k is obviously the wavelength of the k*® wave in the series.
Note that exactly k complete waves fit into the periodicity distance L.

Now suppose we need to make the the interval twice as large, so the
interval is —L < z < L, and we recalculate the a;’s. We will be using the
wavelengths A\, = 2L/k = 2L, L, 2L/3, L/2, ... so all the coefficients we
calculated before will still be here but with different k& subscripts. That
means we can use the original graph and not have to rename anything if
we label things by their wavelength, instead of by the k integer. Writing
the abscissa as A = L/k instead of k, we have Fig. 11.

As we let the interval L grow larger and larger, the scale of the graph
will change and the points labeled by integer values of k will get ever more
closely spaced. As L — oo the points go toward becoming a continuum.

14
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3c. The Continuum Case. In the continuum case we want to describe
the continuum by some parameter that looks like our series-case k = L/
but which does not involve L. It is traditional to use the quantity called
the “wave number” k defined by:

k=2m/\

The Fourier coefficients ay, by, with integer k£, now become the “Fourier
amplitudes” A(k), B(k), with a continuous dimensional k.

> What are k’s dimensions?

Skipping further details on the transition from a sum to an integral,
we write the equations equivalent to Eq. (3) and Eq. (2).

If f(z) obeys Dirichlet’s conditions in every finite interval, no matter
how large, and if, in addition,
| @i

— 00

is finite, then

fla) = [ AR cos(ka) + B(k) sin(ka)] d (4)

A(k) = /00 f(z) cos(kz) dx
oy (5)
B(k) :/_ f(z)sin(kz) dx.

Note that k£ can take on negative values. This feature will be important
when traveling waves, rather than standing waves, are used. However,
for our purposes, A(k) is even and B(k) is odd and we will only plot the
portion of each that has k positive.

3d. Eyeballing the Amplitudes. Just as for Fourier Series, the
Fourier analysis of a function f(z) into waves of various amplitudes and
wavelengths can clarify its physical properties, and it is often sufficient
to get a rough idea of the shape of A(k) and B(k) by “eyeballing” the
function f(z). Most of the ideas presented in the discussion of Fourier
Series are still valid, including symmetry, overlap, structure size verses
wavelength, etc.

Let us consider the examples in Fig. 13. For small & (long wavelength)
cos(kxz) =~ 1 and so near the origin, A(k) is constant and equal to the area

15
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c0s(kx)
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ke Figure 13.

under f(z) divided by 27. For k large [R smaller than any structure in
f(z)], A(k) approaches zero from cancellation of the + and — lobes of the
integral (see Fig.6). The region in which A(k) drops off rapidly is near
A =27 /kl =~ ¢, the size of the major structure in f(z).

> For the examples in Figs. 14-16, see if you can justify exactly the form
of A(k) and B(k).

The most elegant and useful form of the Fourier integral comes when
we use the notation of complex numbers. Then

e™ = cos(kx) + isin(kx), i=v-1,

and we write for the real (or complex) valued function f(x) of the real
variable x:

F@) = /_ = Gk dn (6)
where

Gk) = % /_ T et i (M)

is the Fourier transform of f(x) and is generally a complex valued func-
tion. If f(x) is real, then G(k) is related to the Fourier amplitudes of
Eq. (5) by:

A(k) = ReG(k)

16
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B(k) = —ImG (k).

Figure 14.
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A. Some Indefinite Integrals

. 1 . T
fxsmaacdw = —sinar — — cosazx
a

a2
5 . 2r . x2a® —2
fx sinar dr = — sinax — ————— cosax
2 3
a a
3 . 3z2a2 — 6 . a?z® — 6z
fx sinaxdr = ———— sinaxr — ————— cosax
4 3
a a
1 T .
Jzcosaxdr = — cosar + ~ sinax
a a
9 2x a’z? -2 |
fa: cosardr = — cosar + ———— sinax
2 3
a a
3 3224 — 6 a?x® — 6z .
fx cosardr = ——— cosax + ————sinax

at as

17 18
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PROBLEM SUPPLEMENT

1. For each function listed below, sketch the function, apply symmetry
/\ [\ N conditions to see if any set of coefficients are zero, consider structure
yaN|

L\_//\\/ U \/ \/ \/ \V/ X and overall shape to predict which coefficients may be large, consider

the rate at which coefficients approach zero as & — oo and then use
Egs. (2) to evaluate the coefficients. Each function is defined in —7 <
r <.

(a) f(z) = 1 for |z]<m/2
= 0 elsewhere
A(k)
(b) f(z) = =z for |z|<m/2
=0 elsewhere
(¢) fle) = x for 0<z<m
= 0 elsewhere

(d) f(x) = 2? in the interval.

: k | 2. For each function below, sketch A(k), B(k) by inspection of f(z), then
2 compute A(k) and B(k) and compare.

Fi 16.
igure - .
f €% cos pr dr = e%* acospx + psinpzx
a? + p2
| | )
| I
B. A Definite Integral » L
o0 *a2/12 _ ﬁ (71)2/4&2)

Jo e cos bx dx 5 7 (ab #0) .

| I k

19 20
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