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CLASSICAL TESTS OF GENERAL RELATIVITY

by

C. P. Frahm

1. Introduction

It is probably fair to say that general relativity is distinguished by
its elegance, its mathematical complexity and its experimental truculence.
Einstein himself proposed three tests - the perihelion advance of planets,
the bending of light as it passes near the sun and the gravitational red-
shift. These are known as the classical tests and were for a long time
the only tests amenable to observation. In recent years there have been
proposed a few new tests including radar echo delay and gyroscope pre-
cession. Unfortunately, however, most of these tests are not sufficiently
precise with present technology to unambiguously verify general relativ-
ity and reject other similar theories that have been proposed in the last
50 years. However, it does appear that the results of these tests favor
a geometric theory of gravitation (like general relativity) instead of the
Newtonian theory. Furthermore, none of these tests give results inconsis-
tent with general relativity. This unit will be devoted to the three classical
tests.

2. Procedures

1. a. Read Rindler, pp. 143-144.

¤ Exercise - Fill in any missing details in the analysis leading to
eq. 8.51 of Rindler.

Hint: It is convenient to think of an oscillator or atomic radiator
positioned at the point 1 and observed at point 2. If the oscillator
emits N pulses in coordinate time ∆t1 then those N pulses must
arrive at point 2 in the coordinate time ∆t2. Thus the oscillator’s
proper frequency (number of oscillations per unit proper time of the
oscillator) is given by

ν1 =
N

∆S1

where ∆S1 is the proper (or standard clock) time interval at point
1 corresponding to the coordinate time interval ∆t1. On the other
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hand the frequency observed at point 2 is

ν2 =
N

∆S2

where ∆S2 is the proper (or standard clock) time interval at point
2 corresponding to the coordinate time interval ∆t2. The frequency
ratio is then given by

D =
ν1

ν2

=
∆S2

∆S1

It is now only necessary to express ∆S1 and ∆S2 in terms of ∆t1
and ∆t2 and use the result of eq.8.50 that ∆t1 = ∆t2.

Read section 38.5 in Misner, Thorne and Wheeler

b. Read Rindler pp. 143 - 146.

¤ Exercise - Start with the geodesic equations in MISN-0-474 (use
λ = s ) and show that

a) if a particle initially moves in the θ = π/2 plane (i.e. θ = π/2,
dθ/dS = 0 at the initial instant) then it remains in that plain
(i.e. dnθ/dSn = 0).

b) the geodesic equations for r and φ lead to Rindler’s eqs. 8.52 and
8.53 when the motion is in the θ = π/2 plane. Hints: 1) The
definition of the metric itself requires the following condition for
non-null geodesics

1 = α

(

dt

dS

)2

−
1

α

(

dr

dS

)2

− r2
(

dθ

dS

)2

− r2 sin2 θ

(

dφ

dS

)2

This relation can be used to considerably simplify the geodesic
equation for the radial coordinate. 2) The result of the last
exercise of procedure 3a in MISN-0-474 is also very useful.

Comment - By comparing eqs. 8.52 - 8.53 with eqs. 8.55 - 8.57 in
Rindler one sees two differences. First there is the appearance of a
second term on the right side of eq.8.53 and secondly the Newtonian
absolute time increment is replaced by the particle’s proper time.
The latter difference points up the importance of properly identify-
ing the coordinates and relating them to measured quantities. For
planetary motion (in which the relative velocities are low and the
gravitational field weak it is not unreasonable to expect dS ≈ dt.
Assuming that to be the case then the constant h in eq. 8.52 of
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Rindler must be nearly the same as the Newtonian angular mo-
mentum (eq. 8.55). This then permits one to estimate the relative
importance of the two terms on the right side of eq. 8.53.

3mu2

m/h
≈ 3

(

1

r

)2(

r2
dφ

dt

)2

= 3

(

r
dφ

dt

)2

≈ 3v2

where v is the orbital speed of the planet. Thus (remember c = 1)
for planetary motion

3mu2

m/h
¿ 1

and the second term on the right side of eq. 8.53 can be treated
as a small correction. The solution of eq. 8.53 then must not differ
appreciable from the solution of eq. 8.57. In fact the solution of
eq. 8.57 can be used to evaluate the small term on the right side of
eq. 8.53. This is what Rindler has done to obtain his eq. 8.59.

¤ Exercise - Fill in the details in the analysis leading to eqs. 8.61
and 8.62 of Rindler.

Read pages 198-201 of Weinberg.

c. Read Rindler from the middle of p. 146 to the end of section 8.4.

Comment - The analysis should start with the geodesic equations
using the parameter λ 6= S since dS2 = 0 for a light signal. However,
the end result is the same as that obtained by setting h = ∞ in
Rindler’s eq. 8.53. Thus it is safe to begin with eq. 8.64 in Rindler.

(Optional) ¤ Exercise - Derive eq. 8.64 of Rindler directly from the
geodesic equations using dS2 = 0.

¤ Exercise - Fill in any missing details in the analysis leading from
eq. 8.64 of Rindler to the result that the total deflection is 4m/R.

Read pp. 191-194 of Weinberg.

2. Work problems 8.13, 8.14 and 8-15 of Rindler.
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