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Input Skills:

1. Define four-tensors in terms of their Lorentz transformation prop-
erties. Contract, add, and differentiate tensors. Show that the
D’Alembertian is a Lorentz scalar (MISN-0-469).

2. State Maxwell’s equations and define all the symbols involved.

3. Unknown (MISN-0-469).

Output Skills (Knowledge):

K1. Starting with Maxwell’s equations: (a) define the scalar and vector
potentials, and derive the wave equations for these potentials, (b)
define the 4-vector potential, and justify the 4-vector character of
each.

K2. (a) Define the electromagnetic field tensor and express it in terms
of the electric and magnetic fields. (b) Express Maxwell’s equa-
tions in a manifestly covariant form. (c) Derive and explain the
significance of the continuity equation. (d) Express the Lorentz
condition in a manifestly covariant form.

K3. Use the transformation character of the electromagnetic field ten-
sor to determine the transformation rules for the electric and mag-
netic fields in special cases.

K4. Express the Lorentz force law in a manifestly covariant form and
thereby obtain the transformation character of a 3-force.

External Resources (Required):

1. W.Rindler, Essential Relativity, Van Nostrand (1977).
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COVARIANCE OF ELECTRODYNAMICS

by

C. P. Frahm

1. Introduction

According to the Relativity Postulate the laws of physics should take
the same form in all inertial frames. Einstein was motivated to enunci-
ate this postulate by consideration of electromagnetic phenomena - es-
pecially the interplay between electric and magnetic fields as a function
of relative velocity. In fact, one might go so far as to say that relativity
was “constructed” to make Maxwell’s electromagnetic theory take on the
same form in all inertial frames, thereby guaranteeing the constancy of
the speed of light. Thus, electromagnetic theory provides an immediate
ready-made example of the relativity postulate. For this reason this unit
will be devoted to an investigation of those aspects of electrodynamics
that bear directly on relativity. In particular the theory of Maxwell will
be expressed in a tensor form which manifestly exhibits the invariance in
form (or covariance, as it is called) of the theory. As very desirable by-
products, this unit provides some practice in manipulation of tensors-and
a transformation law for forces. The latter will prove very useful in the
discussion of relativistic mechanics in the next unit.

Lorentz had earlier found that Maxwell’s equations were invariant
under the transformations which bear his name. However, he failed to
grasp the significance of this result and he failed to take the step of re-
placing the Galilean transformation with the Lorentz transformation to
connect inertial frames.

2. Procedures

0. (Review or introduction, whatever). The material of this unit re-
quires all of Maxwell’s theory of electromagnetic phenomena in vac-
uum. Hence a review of Maxwell’s theory is called for. You may wish
to consult your favorite E & M text although the sketch presented
here should be sufficient for the needs of this course. Gaussian units
(with c = 1) will be used throughout.

a. To define the electric and magnetic fields, consider a small test
charge q with velocity ~u (relative to our inertial frame) and located
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at point ~r at time t. The total force experienced by the particle
will consist in general of two parts - one which would be present
even if the particle were uncharged (q = 0) and the other which is
present only if the particle is charged (q 6= 0). The latter force is

the electromagnetic force ( ~Fem) acting on the particle. The electro-
magnetic force in turn will generally consist of two parts - one which
is present even if the particle is at rest (~u = 0) and one which is
present only if the particle is moving (~u 6= 0). The former is called

the electric force ( ~Fe) while the latter is called the magnetic force

(~Fm). The electric and magnetic fields are then defined implicitly
in terms of these two forces as follows:

~Fe(~r, t) = q ~E(~r, t)

~Fm(~r, ~u, t) = q~u× ~B(~r, t)

Taken together, they give the Lorentz force law

~Fem = q( ~E + ~u× ~B)

b. The electric and magnetic fields are generated by charges and cur-
rents. The relationships between the sources - charge density and
current density J - and the electric and magnetic fields as well as the
interrelation between these fields is given by Maxwell’s equations (in
vacuum):

~∇× ~E = −
∂ ~B

∂t

~∇× ~B = 4π ~J +
∂ ~E

∂t

~∇ · ~E = 4πρ

~∇ · ~B = 0

It will not be necessary to have a deep physical understanding of
these equations for this course. It will be sufficient to understand
the mathematical symbols involved along with the definitions of ~E,
~B, ρ and ~J .

1. a. For any vector field ~B having zero divergence (i.e. ~∇ · ~B = 0) there

exists a vector field ~A such that

~B = ~∇× ~A
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In the case of the magnetic field (which has zero divergence by

virtue of the fourth of Maxwell’s equations) ~A is called the vector
potential. It is not uniquely defined by the above expression since

~A′ = ~A+ ~∇χ

where χ is any scalar function, would do just as well. A change
from ~A to ~A′ is called a gauge transformation. It does not alter the
physics since

~B = ~∇× ~A = ~∇× ~A′

Substituting for ~B in the first of Maxwell’s equations gives

~∇× ~E = −
∂

∂t
(~∇× ~A) = −~∇×

∂ ~A

∂t

or
~∇× ( ~E + ∂ ~A/∂t) = 0

Now any vector field that is irrotational (i.e. has zero curl) can be
expressed as the gradient of a scalar function. Thus

~E + ∂ ~A/∂t = −~∇φ

or
~E = −(~∇φ+ ∂ ~A/∂t)

The function φ is called the scalar potential and is implicitly defined
by the previous equations.

¤ Exercise - Substitute for ~E and ~B in terms of the scalar and vector
potentials into the remaining two of Maxwell’s equations (the ones
involving the sources) and show that

a)

∇2 ~A−
∂2 ~A

∂t2
= −4πJ + ~∇(~∇ · ~A+

∂φ

∂t
)

Hint: use the identity

~∇× (~∇× ~A) = ~∇(~∇ · ~A)−∇2 ~A

b)

∇2φ−
∂2φ

∂t2
= −4πρ+

∂

∂t
(~∇ · ~A+

∂φ

∂t
)

Note that both relations obtained in the exercise involve the
quantity ~∇· ~A+∂φ/∂t. Because of the freedom allowed by gauge
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transformations, it is always possible to choose ~A in such a way
that this quantity is zero.

~∇ · ~A+ ∂φ/∂t = 0

This is called the Lorentz condition. Assuming the Lorentz con-
dition has been satisfied, the two equations become

∇2 ~A− ∂2 ~A/∂t2 = −4π ~J

∇2φ− ∂2φ/∂t2 = −4πρ

These are both wave equations (propagation speed c = 1) with

sources ~J and ρ.
¤ Exercise - In a region where ~J = 0 show that

~A = ~aeı(
~k·~r−ωt)

is a solution of the wave equation provided that

ω2

k2
= 1

The quantities ~a, ~k and ω are constants.
Note: This is a plane wave of angular frequency ω propagating
in the ~k direction.

b. By definition the charge density ρ is the charge per unit volume
while the current density ~J is the charge crossing unit area in unit
time in the direction of maximum flow. These two quantities to-
gether constitute a 4-vector-the current density 4-vector.

Jµ = (ρ, ~J)

To verify the 4-vector character of Jµ it is convenient to consider
a charged fluid flow having charge density ρ and 3-velocity ~u. The
current density is then given by

~J = ρ~u

If it is assumed that charge is a scalar quantity, then the charge
density can be expressed in the form

ρ = γuρ0
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where ρ0 is the charge density in the rest frame of the fluid. The
factor of γu arises from the Lorentz contraction of the volume in
the direction of fluid flow. The quantity Jµ can then be written

Jµ = (γuρ0, γuρ0~u) = ρ0γu(1, ~u) = ρ0U
µ

where Uµ is the 4-velocity defined in MISN-0-469. Thus Jµ is a
scalar (ρ0) times a 4-vector (U

µ) and hence is itself a 4-vector.

The wave equations for the potentials (φ, ~A) can be expressed in
the form:

2(φ, ~A) = −4π(ρ, ~J)

where the 2 is the D’Alembertian operator defined in MISN-0-469.
It was shown in MISN-0-469 that the D’Alembertian is a scalar op-
erator and it has just been show in this unit that (ρ, ~J) is a 4-vector.
Thus since the electromagnetic theory of Maxwell is assumed to be
a form invariant theory under Lorentz transformations, it can only
be concluded that the quantity

Aµ = (φ, ~A)

is a 4-vector (the 4-vector potential). The wave equations can then
be expressed in the compact and manifestly covariant form

2Aµ = −4πJµ

Note: Do not confuse the 4-vector potential (Aµ) with the 4-
acceleration (Aµ).

2. a. The electromagnetic field tensor is defined by

Fµν = ∂µAν − ∂νAµ

It is a second rank tensor and it is antisymmetric in the sense that

Fνµ = −Fµν

¤ Exercise - Show that

(a) F01 = Ex, F02 = Ey, F03 = Ez

(b) F12 = −Bz, F23 = −Bx, F31 = −By

Write down the matrix representation of Fµν using its antisymmetry
property and compare with the expression given on p. 7 of MISN-
0-469.
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b. ¤ Exercise - Show that the manifestly covariant form of Maxwell’s
equations is given by

a) ∂µF
µν = 4πJν

b) ∂ρFµν + ∂Fνρ + ∂νFρµ = 0

Hints: In a) take ν = 0 and obtain ~∇· ~E = 4πρ. Then take ν = 1
and obtain the x-component of

~∇× ~B = 4π ~J +
∂ ~B

∂t

In b) take {µ, ν, ρ} = {1, 2, 3} and obtain ~∇ cot ~B = 0. Then
take {µ, ν, ρ} = {1, 2, 0} and obtain the z-component of

~∇× ~E = −
∂ ~B

∂t

c. Taking the 4-gradient of the source equations

∂µF
µν = 4πJν

gives
∂ν∂µF

µν = 4π∂νJ
ν

Now since F νµ is antisymmetric and ∂ν∂µ is symmetric, the left
side is zero (think about this!). Thus

∂νJ
ν = 0

This is called the equation of continuity and is equivalent to a state-
ment of conservation of charge.

¤ Exercise - a) Show that the equation of continuity can be ex-
pressed in the form

∂ρ

∂t
+ ~∇ · ~J = 0

b) Integrate this equation over a closed volume V and show that
the time rate of change of the charge within the volume is equal to
the rate at which charge flows out through the surface S bounding
the volume V . (Use Gauss’ law).

d. ¤ Exercise - Express the Lorentz condition in a manifestly covariant
form.
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3. By construction the electromagnetic field tensor is a second rank
Lorentz tensor. Hence its behavior under Lorentz transformations is
known.

F ′

µν(xρ
′) = Fλω(xρ)(a

−1)λµ(a
−1)ων

with
xρ′ = aρηx

η

Note that the transformation law connects the field components in the
two frames at the same space-time point. Also note that this transfor-
mation law can be conveniently expressed in matrix form

F ′ = (a−1)TFa−1

(Transformation laws for higher rank tensors, of course, cannot be
expressed as matrix equations.)

¤ Exercise - Show that for a boost at speed v in the +x-direction, the
electric and magnetic fields transform as follows:

E′

x = Ex B′

x = Bx

E′

y = γ(Ey − vBz) B′

y = γ(By + vEz)

E′

z = γ(Ez − vBy) B′

z = γ(Bz + vEy)

Note that the electric and magnetic fields become mixed in going from
one inertial frame to another. Thus it is convenient to think of ~E and
~B as different manifestations of one and the same field - the electro-
magnetic field (Fµν).

¤ Exercise - Frame S′ is boosted in the +x-direction at speed v relative
to frame S. A charge q is at rest at the origin of frame S. What are
the electric and magnetic fields in S ′ resulting from q at the instant
the origins of the two frames coincide? Express in terms of the primed
frame coordinates.

Read Rindler section 6.1, omit the long paragraph that begins on p. 97
Note that Rindler orders the components of the electromagnetic field
tensor somewhat differently from this study guide. He also uses Aµν

instead of Fµν for the field tensor.

Read Rindler, sections 6.2 - 6.4
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4. Consider the following quantity

T µ = gµνFνωU
ω

By construction, it is a Lorentz 4-vector. As the following exercise
shows, it is the manifestly covariant form of the Lorentz force law.

¤ Exercise - Show that the spatial part of T µ is γu times the Lorentz
force per unit charge, i.e.

~T = γu( ~E + ~u× ~B) = γu(~Fem/q)

This exercise yields valuable information on the transformation prop-
erties of 3 - forces. Clearly they must transforms like 1/γu times the
spatial part of a 4-vector (since charge is a scalar).
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