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Input Skills:

1. Vocabulary: Mathematical group.

2. State the postulates of special relativity (MISN-0-465).

Output Skills (Knowledge):

K1. Define simultaneity (as in special relativity). Show that simul-
taneity depends on the motion of the observer.

K2. Outline the argument for establishing the form of the Lorentz
transformation for a boost along a coordinate axis.

K3. Discuss in relation to relativity: (a) group property of Lorentz
transformations; (b) uniqueness of the invariant speed c; (c) lim-
iting nature of the speed c.

K4. State the Lorentz transformation for a boost along any coordinate
axis in two forms (Lorentz factor γ, rapidity φ) and the relation-
ship between the forms.

Output Skills (Rule Application):

R1. Given the coordinates of an event in one inertial frame, find its
coordinates in another. Given the coordinates of an event in two
inertial frames, find the relative velocity of the frames.

Output Skills (Problem Solving):

S1. Given information about the relative velocities of a series of inertial
frames find the Lorentz transformation from any one of the frames
to another.

External Resources (Required):

1. W.Rindler, Essential Relativity Van Nostrand, (1977).

2. A. P. French, Special Relativity, Norton (1968).
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LORENTZ TRANSFORMATIONS

by

C. P. Frahm

1. Introduction

In special relativity as in Newtonian mechanics it is possible to di-
vide the discussion into two parts - kinematics and dynamics. Kinematics
covers the mathematics of particle motion while dynamics is concerned
with the forces that cause particles to move in the way that they do.
The prescription for translating observations from one inertial frame to
another is primarily a mathematical exercise and should be considered
a part of kinematics. This prescription in Newtonian mechanics - the
Galilean transformation - plays a rather secondary role and is quite often
passed over and forgotten in introductory courses. However, its counter-
part in special relativity - the Lorentz transformation - is essential to the
entire discussion. Hence this unit is devoted to a development of the form
of the Lorentz transformation in a special case.

2. Procedures

0. There are some things that need to be discussed and/or emphasized
before jumping into the task at hand.

a. First there are some assumptions that are almost always tacitly
made in textbooks. They are perhaps obvious; but, until one real-
izes clearly that these assumptions have been made and not others,
it is difficult to get a clear understanding of the beginning develop-
ment of special relativity. For example, special relativity assumes
the existence of inertial frames in which Newton’s first law is valid
(i.e. free particles travel in straight lines) and light obeys the law of
rectilinear propagation. However, it makes no a priori assumption
about the relative motion (which must be uniform in Newtonian
physics) of two inertial frames. Furthermore, it makes no a priori
assumption about the relationships between observations made in
two different inertial frames.

Just as in Newtonian physics, special relativity assumes space to be
Euclidean, homogeneous and isotropic while time is assumed to be
homogeneous (i.e. flow uniformly) when viewed from a single iner-
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tial frame. However, space and time are not assumed to be absolute
in special relativity. Thus, special relativity allows for the numerical
values of lengths and time intervals to be different when measured
from different inertial frames although identical equipment is used.

b. Besides the aforementioned assumptions, there is some terminology
used in special relativity discussions that can be a little confusing.
For example, it is common practice to speak of “standard clocks”
and “standard measuring rods” as if they are something special.
They are not! In fact, any clocks (or rods) are suitable provided
that they are 1) identical in construction and 2) sufficiently precise
for the discussion at hand.

It is also common practice to speak of “such-and-such an event in
reference frame S” as though that event only occurred in frame S or
that it is only observable from frame S. You must realize from the
beginning (and this cannot be over emphasized) that all events are
observable by all observers independent of their state of motion.
Thus “. . . in S” is short-hand for “. . . as observed by an observer
who is at rest relative to frame S and who happens to be at the
location of the event when it occurs.”

c. In the beginning study of relativity there is an occasional tendency
to think that the consequences of special relativity are due simply
to time delays resulting from the finite speed of light. Such time
delays do produce interesting results but they are not at the heart of
special relativity. In fact, such time delays exist even in Newtonian
physics. In special relativity time delays only serve to complicate
the discussion. To avoid such unnecessary complications, it is cus-
tomary to assume the availability of an observer situated precisely
at the location of the event(s) of interest. In the laboratory, of
course, such observers are seldom, if ever, present and it becomes
necessary to correct for delay times before investigating relativis-
tic effects. Throughout this course (unless otherwise stated) the
observer(s) will be assumed to be located at the position of the
event(s) and no consideration of time delays need be made.

1. Read Rindler, sections 2.1 - 2.4. Omit second paragraph on p. 25

Note: It is assumed that there is no problem concerning the simul-
taneity of events occurring at the same point in space. Only the si-
multaneity of events separated spatially is considered non-trivial.

Comment: A little theorem is needed to make the discussion on pages
28 - 29 completely meaningful.
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Theorem: If two parallel line segments, at rest relative to one another,
are equal in one inertial frame, they are equal in all inertial frames.

Proof : Since the line segments are parallel and since space is homo-
geneous, one of the line segments can be moved into coincidence with
the other one without its perceived length being altered. Now if their
lengths are the same in one inertial frame (recall meaning of “. . . in
S”) their end- points will coincide in that frame. But the endpoints
must then coincide in all frames. Now by homogeneity of space the line
segment can be moved back to its original position without altering its
length in any inertial frame. Hence the two lengths are equal in all
inertial frames.

As a consequence of this theorem observers in both frames (S and S ′)
in the discussion of section 2-4 of Rindler agree thatM is the midpoint
of PQ andM ′ is the midpoint of P ′Q′. HenceM ′ andM must coincide
in S when P and Q occur and finally M ′ must be to the right of M
when the light signals arrive at M .

Note: The conclusion that Q happened before P in S ′ but simultane-
ously in S implies that although S ′ clocks are synchronized in S ′, and S
clocks are synchronized in S, the S ′ clocks do not appear synchronized
when viewed from S and vice versa.

Figure 1 shows the clocks when P and Q occurred, as seen from S.

Note that in S, P ′M ′ = M ′Q′ (in fact, PM = P ′M ′) but, clock P ′ 6=
clock M ′ 6= clock Q′, (i.e. S′ clocks do not appear to be synchronized
when viewed from S).

Figure 2 shows the clocks when Q occurred, as seen from S ′.

Figure 3 shows the clocks when P occurred, as seen from S ′.

Note that, in S′, PM = MQ (now, however, PM < P ′M ′ but the S
clocks do not appear synchronized).

Study these figures very carefully!

¤ Exercise - Draw pictures of the clocks when M and M ′ coincide as
seen from S′.

2. Read Rindler, sections 2.5 and 2.6.

In the argument given by Rindler there are three main steps:

(1) Use of the definition-of inertial frames and an imposition of a finite-
ness requirement to establish the linearity of the equations. The
linearity of the equations alone has interesting implications:
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Figure 1. .

(a) inertial frames have uniform translatory relative motion

(b) the orientation of the axes of one frame as seen from another does
not change in time. Once this is established Rindler specializes to
the “standard configuration” case in which the coordinate axes
coincide exactly at time t = t′ = 0 and the relative motion is
along the x-axis.

(2) Establishment of the “standard configuration” transformation equa-
tions for the spatial components perpendicular to the relative ve-
locity using linearity and isotropy.

(3) Establishment of the “standard configuration” transformation equa-
tions for time and the space component parallel to the relative mo-
tion using linearity, isotropy and the second postulate of special
relativity.

After studying Rindler see if you can reconstruct the argument on
paper without reference to the text.

Comment - There are, of course, inertial frames that are not in stan-
dard configuration relative to one another. There are frames that are

P'

P
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M

Q'

Q

Figure 2. .
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Figure 3. .

rotated (not rotating!), there are inertial frames whose origins don’t
coincide at t = t′ = 0 and there are inertial frames whose origins never
coincide. Fortunately, all Lorentz transformations can be expressed as
a combination of four special types of Lorentz transformations:

1) Boost - connects inertial frames whose coordinate axes are parallel
and whose origins coincide at t = t′ = 0. (Note: the relative motion
is not necessarily along the +x-axis. Rindler’s “standard LT” is a
special kind of boost.)

2) Rotations - connects inertial frames whose origins always coincide
but whose axes are rotated (not rotating!) relative to one another.

3) Space translations - connects inertial frames with no relative motion
whose coordinate axes are parallel and whose clocks agree but whose
origins do not coincide.

4) Time translations - connects inertial frames with no relative motion
whose axes coincide but whose clocks differ by a fixed amount.

This course is primarily concerned with boosts although one should be
aware of the other three types of Lorentz (or Poincaŕe) transformations.

3. Read Rindler, section 2.7.

If you are not familiar with the concept of a group (mathematically)
then it would be worthwhile to consult a math text. Convince yourself
that the set of all Lorentz transformations forms a group.

4. Read Rindler, section 2.8.

Memorize equations 2.6, 2.7, 2.16 and 2.14 in Rindler. In equations 2.6
and 2.7 the quantity γ is called the Lorentz factor while in equations
2.16 and 2.14 the quantity φ is called the rapidity.
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I find these equations much easier to remember using units in which
c = 1.

x′ = γ(x− vt)

y′ = y

z′ = z

t′ = γ(t− vx)

Note that except for γ the first equation is just the Galilean trans-
formation while the last equation can be obtained from the first by
interchanging x and t everywhere.

In the rapidity form with c = 1 the boost becomes

x′ = x coshφ− t sinhφ

y′ = y

z′ = z

t′ = t coshφ− x sinhφ

Again, note the interchange of x and t in the first and last equations.

It is also very helpful to express these transformations in matrix form.









x′

y′

z′

t′









=









γ 0 0 −vγ
0 1 0 0
0 0 1 0
−vγ 0 0 γ

















x
y
z
t









=









coshφ 0 0 − sinhφ
0 1 0 0
0 0 1 0

− sinhφ 0 0 coshφ

















x
y
z
t









Note the symmetry of the transformation matrix.

Comment - Many books used to (and some still do) use a complex
number notation. This is neither necessary nor useful. In fact, it
can lead to severe complications especially when considering in more
detail the group properties of Lorentz transformations. We will use
real numbers only throughout our discussion of special relativity.

Comment - The use of c = 1 is extremely convenient and will be used
throughout this course. If at any time (for numerical purposes) it is
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necessary to reinsert the c’s this can easily be done from dimensional
arguments alone.

¤ Exercise - Write down the Lorentz transformation for a boost at
speed v along the z-axis.

¤ Exercise - An event occurs at the position (1 cm, 2 cm, 3 cm) at time
t = 10−10 sec in frame S. What are the coordinates (space and time)
of this event in frame S′ which is moving at a speed of 0.8c relative to
S along the +y-axis? (assume S and S ′ are related by a boost.)

5. ¤ Exercise - Show that v2γ2 = γ2 − 1

¤ Exercise:

a. Show that for v small (v ¿ 1), γ ≈ 1 + 1/2v2

b. Show that for v large (v ≈ 1), γ ≈ 1/
√
2δ, δ ≡ 1− v

c. Show that for v = 0.99 . . . 995 (2n nines), γ ≈ 10n

¤ Exercise - Consider 3 inertial frames S, S ′ and S′′. S′ is boosted
along x relative to S with speed v1 while S′′ is boosted along x relative
to S′ with speed v2.

a. Find the transformation matrix from S to S ′′.

b. Show that
γ = γ1γ2(1 + v1v2)

vγ = γ1γ2(v1 + v2)

where γ1 = (1− v2

1
)−1/2, etc.

c. Show that

v =
v1 + v2

1 + v1v2

Note: This is done in a “slicker” way in Rindler, Section 2.8 , but
this is probably more instructive.

¤ Exercise - Consider three inertial frames S, S ′ and S′′. S′ is boosted
along x relative to S with speed v1 while S′′ is boosted along y relative
to S′ with speed v2.

a. Find the transformation matrix from S to S ′′.

b. What is the speed of S′′ relative to S? Hint: consider the motion
of the origin of S′′.

¤Work problems 3-6 and 3-7 on p. 87 of French.
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