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TRANSLATIONAL & ROTATIONAL

MOTION OF A RIGID BODY

by

J. S.Kovacs

1. Introduction

1a. General Description of the Motion of a System of
Particles. The general description of the motion of a system of parti-
cles consists of specifying the motion of the center of mass (CM) of the
system (as if the whole mass of the system were located at the center of
mass) plus the description of the motion of the particles of the system
relative to the center of mass. For a rigid body the particles of the system
are constrained to move such that the relative separation of all pairs of
particles remains unchanged. Theorems about the motion of rigid bodies
will be demonstrated as they apply to a simple rigid system.

1b. Theorems on the Motion of Rigid Bodies. When a set of
forces acting upon a rigid body are such that they combine to produce
an external torque which is directed along one of the principal axes of the
body (see Fig. 1), the following theorems may be applied to determine
completely the motion of the rigid body:

a. Relative to an inertial reference system the time rate of change of
the center of mass momentum of a rigid body is equal to the net
external force acting on the rigid body:

d~PCM

dt
= ~Fext.

a′. If there is no net external force on a rigid body, the center of mass
momentum is constant, and hence the center of mass velocity is

CM acm

Fext

`

`

Figure 1. Torque-producing forces
acting on a body.
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constant in magnitude and direction: ~PCM = constant vector, ~VCM

= constant vector.

b. Relative to any point in an inertial reference system, the time deriva-
tive of the angular momentum vector of a rigid body is equal to the
net external torque acting on that body relative to the same point:

d~L

dt
= ~τext.

b′. With no external torque on the body the angular momentum vector
relative to any point in an inertial reference system is constant.

c. The total kinetic energy of a rigid body relative to an inertial refer-
ence system is the kinetic energy of the center of mass of that body
relative to the inertial system, plus the kinetic energy of the body
relative to the center of mass. (For a rigid body this latter is the
kinetic energy of the rotation of the body about the center of mass.

2. Application of Rigid Body Theorems to a Simple

System

2a. Description of the Motion of a Rigid Body. The complete
description of the motion of a rigid body consists of the description of the
translational motion of its center of mass as if it were a point mass, plus
the description of its rotational motion about an axis through its center
of mass.1 The net external force on the system will determine the former,
while the net external torque will determine the latter.

2b. Example: Collision of a Point Mass with a Dumbbell. As
an illustration of the theorems listed in Sect. 1b, consider the following
example:

In far outer space, far from the influence of any appreciable gravita-
tional force, a rigid body consisting of two point masses, of mass M and
4M , at the ends of a massless rod of length d is at rest relative to an
inertial reference frame.2 Another mass, M , makes a collision approach

1The axis is not necessarily fixed in its direction in space. In cases when it is not,
the motion of the direction of the axis is necessary to complete the description. We
will not consider such cases here. See, however, “Torque and Angular Momentum in
Circular Motion” (MISN-0-34) and “Euler’s Equations: The Tennis Racket Theorem”
(MISN-O-57).

2An inertial reference frame is a frame in which Newton’s First Law of Motion is
true.
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d

M

4M
M

v0

`

Figure 2. A mass M with initial speed ~V0 approaches to
make a head on collision with a mass 4M , initially at rest.
The mass 4M is attached via a rigid massless rod to an-
other mass M with the orientation of the rod such that it is
perpendicular to the line of flight of the moving mass.

toward this rigid body, moving with a velocity ~Vo toward a head on col-
lision with the 4M mass directed perpendicularly to the rod connecting
the rigid body masses (See Fig. 2).

2c. Mass and Dumbbell: Translational Motion. Problem: To
demonstrate that the center of mass of the three mass system moves with
the same velocity before and after the collision.

Answer : First, the center of mass must be located, then its velocity before
the collision occurs must be determined. The center of mass of the rigid
body is located one-fifth of the distance from the 4M mass along the line
connecting the two masses (at point A in Fig. 3). The center of mass of
the combination of this mass (5M) and the incident mass M is located
along the line joining these masses and one-sixth of the distance from the
5M mass to the incident mass (at point B). Figure 2 shows this location
at the instant when the incident mass is distance D from the mass 4M .

Problem: How high above the line joining the incident mass with the
struck mass is the center of mass?

Answer : From the similar triangles OPA and OB ′B we see that BB′ is
five-sixths of AP so that the length of BB′ is (d/6).

Problem: Where will the center of mass be when the incident mass strikes
the 4M mass?

Answer : It will be at B′′, a distance (d/6) above point P , the location
of the mass 4M . With B and B′′ both the same distance above the line
OP , it is clear that the line BB′′ is parallel to the line OP . Thus, while
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Figure 3. A geometrical determination of the location of
the center of mass of the system described in Fig. 2.

the incident mass moved distance D, the center of mass moved from B to
B′′ along a line parallel to line OP . Line BB′′ is of length (D/6), hence
the center of mass velocity must be one-sixth of the incident velocity and
parallel to the incident velocity:

~VCM =
1

6
~V0. (1)

Problem: What is the CM velocity after the collision?

Answer : It must be the same because there are no external forces on the
three mass system. (The incident mass and the struck mass exert forces
on each other but these are internal forces.) Because :

d~PCM

dt
= ~Fext = 0, (2)

~PCM = constant vector. (3)

To demonstrate this, consider the case where the incident mass sticks
to the mass 4M upon colliding. Before the collision, as observed in an
inertial frame at rest with respect to the rigid body, the only momentum
is M~V0. After the collision the momentum is that of the new rigid body
(5M at one end, M at the other). The momentum is thus 6M~VCM where
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~VCM is the velocity of the center of mass after the collision. Equating
these two (because there are no external forces) we get:

~VCM =
1

6
~V0, (4)

exactly what it was before the collision.

2d. Mass and Dumbbell: Rotational Motion. Problem: Is this
the only motion of the combined system?

Answer : Obviously not. The system spins around as it moves. (If the
rigid rod were struck at the center of mass of the system, no spinning
would occur.) To describe completely the motion we must also include
a description of the rotation of the system. Rotational motion is deter-
mined by external torques on the system and how they affect the angular
momentum of the system:

d~L

dt
= ~τext, (5)

where ~L and ~τext are both defined with respect to the same point in
some inertial reference frame. With our system (consisting of the three
masses) there is no net external torque. Therefore the angular momentum,
evaluated relative to any point in an inertial frame, is constant:

~L = constant vector. (6)

It is convenient to take the point relative to which the torque is evaluated
as the center of mass of the system.

Problem: First, is this a point in an inertial reference frame?

Answer : If the reference frame in which the rigid rod (before collision) is
at rest is an inertial reference frame, then so is a frame which is attached
to the center of mass and moving with it. That’s because the center of
mass reference frame is moving with constant velocity with respect to the
reference frame which is at rest with respect to the rigid rod. (In frames
of reference which don’t accelerate with respect to each other, observers
see the same force or effect of a force.)

Problem: Relative to this point, what is the angular momentum of the
system before the collision takes place?

Answer : Relative to this point the incident mass is moving to the right
with velocity (5/6)~V0 (recall that the center of mass itself is moving to

the right with velocity (1/6)~V0). The masses on the ends of the rigid rod
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Figure 4. The motion of the system described in Fig. 2
(before collision) as observed in a reference frame in which
the center of mass is at rest.

are thus both moving to the left with a speed (1/6)~V0 or with velocity

−(1/6)~V0. Hence, viewed at rest with respect to the center of mass, the
motion observed is as shown in Fig. 4.

The total angular momentum of this system as seen relative to the
center of mass is the vector sum of the individual angular momenta. Each
~L = ~r×m~v, where ~r is the vector from the center of mass to the instanta-
neous location of the mass, and ~v is the velocity of that mass. However,
the magnitude of this cross product is the magnitude of the momentum
times the “lever arm.”3Its direction may be evaluated separately using
the right hand rule. The individual angular momenta are determined as
indicated in Table 1.

3See “Force and Torque” (MISN-0-5)
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Table 1. Determination of the individual angular momenta relative to
the center of mass of the system for each of the three point masses of the
system shown in Fig. 2.

Lever Magn. of Direct. of

Object Mass Speed Arm Ang. Mom. Ang. Mom.

incident mass M
5

6
V0

1

6
d

5

36
MV0d up, out of page

mass on rod 4M
1

6
V0

1

6
d

4

36
MV0d down, into page

mass on rod M
1

6
V0

5

6
d

5

36
MV0d up, out of page

The resultant angular momentum of the system (before collision) is thus:

1

6
MV0d directed up, out of page. (7)

This is also the value of the angular momentum of the rod after the
incident mass struck and attached to the 4M mass. Hence the newly
formed rigid body (M and 5M) at two ends of a rigid rod of length
d rotates counter-clockwise about the center of mass with an angular
momentum whose magnitude is (d/6)MV0.

Problem: What is the angular velocity of rotation of this rigid body?

Answer : For a rigid body rotating about a principal axis ~L = I~ω and ~ω
is in the same direction as ~L. In this case, up out of page: the rotation is
counter-clockwise. I, the moment of inertia, from its definition is the sum
of the “mass times distance squared” contributions for each mass relative
to the axis parallel to ~L through the center of mass. It is, therefore,

I = M

(

5

6
d

)2

+ 5M

(

1

6
d

)2

=
5

6
Md2. (8)

We thus find: ~ω = V0/(5d). Consequently, the complete description of
the motion of the system after impact is as follows:

i. The center of mass moves with constant velocity (1/6)~V0 in a
straight line parallel to the direction of the velocity of the incident
mass.

ii. The rod rotates counter-clockwise about an axis through the center
of mass (perpendicular to the plane of the paper) with a constant
angular velocity of V0/(5d)
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2e. Mass and Dumbbell: Kinetic Energy. Problem: What is the
kinetic energy of the system?

Answer : Again the answer depends upon the reference frame with respect
to which this kinematical quantity is to be observed. Hence, making the
question more specific:

Problem: What is the kinetic energy of the system relative to a system
which is at rest with respect to the rigid rod before the collision?

Answer : The kinetic energy before the collision is that of the incident
mass:

1

2
MV 2

0 .

After the collision it is the kinetic energy of the center of mass as if all

the mass were concentrated there: (1/2)6M
V0

6

2

plus the kinetic energy

of all the parts of the system relative to the center of mass. For a rigid
body this is (1/2)I~ω2. For this object it is:

1

2
I~ω2 =

1

60
MV 2

0 . (9)

The total kinetic energy is thus:

Ek(total) =
1

2
MV 2

0 +
1

60
MV 2

0 =
1

10
MV 2

0 . (10)

(5 times as much kinetic energy is in translational motion as there is in
rotational motion. If the incident mass had struck the center of mass, all
the kinetic energy would have been in translational motion.)

Problem: What is the “Q” of this collision?

Answer : According to its definition, Q is the change in the kinetic energy
that occurs as a result of the reaction. If Q is positive, kinetic energy has
been gained as a result of the reaction or collision. For this collision:

Q = −4
5

(

1

2
MV 2

0

)

. (11)

As a result of the collision 80% of the original kinetic energy is lost. (The
collision is obviously inelastic4).

4See “Potential Energy, Conservative Forces, The Law of Conservation of Energy”
(MISN-0-21).
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PROBLEM SUPPLEMENT

1. For the system shown in Fig. 1 of the textual material, determine the
velocity of the center of mass of the system before the collision. Show
that it is parallel to the velocity of the incident mass.

2. Determine the velocity of the center of mass of the system of Prob-
lem 1 after the collision, assuming the projectile mass sticks to the
mass 4M .

3. Relative to the center of mass of this above system, determine the
velocity of each of the three component masses before the collision.

4. Determine the total angular momentum relative to the center of mass
of the above mentioned system before the collision.

5. Determine the total angular momentum relative to the stationary
mass M (on the rod) before the collision.

6. Assuming conservation of angular momentum, calculate the angular
velocity of the system relative to the center of mass after the collision.

7. Assuming conservation of angular momentum, calculate the instanta-
neous angular velocity of the system after the collision relative to the
location of the initially stationary mass M . (This will be the angular
velocity with which that upper mass M sees the other masses begin
to rotate around it.)

8. Determine the total kinetic energy, relative to a frame at rest with
respect to the rod, of the system before the collision occurs.

9. Determine the total kinetic energy relative to this same frame (as in
8 above) of the system after the collision.

10. Determine the gain or loss of kinetic energy as a result of the collision.

14
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Brief Answers:

1. Equation (1).

2. Equation (2).

3. See Fig. 3.

4. Equation (7).

5. MV0d, directed up, out of page.

6. ω = V0/(5d) counter-clockwise as viewed looking at the plane of the
paper.

7. ω = V0/(5d).

8.
1

2
MV0.

9. Equation (11).
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MODEL EXAM

1. For the same problem as was illustrated in the text, Sect. 2, find the
kinetic energy of the system before the collision [K], the kinetic energy
after the collision [C] and the Q of the collision [F], all as observed in
a reference frame attached to the center of mass.

2. In far outer space free from any outside forces and observed in an
inertial frame, there is at rest a uniform rod of length L and mass M .
A point mass, also of mass M approaches the rod with a velocity ~V0

directed perpendicular to the long axis of the rod. The mass strikes
the rod at a point that is a distance d away from the center of the
rod, toweard the end of the rod. After the collision, the incident mass
continues along the same straight line in its original direction but with
a reduced velocity, ~V0/2.

a. Determine the location of the center of mass of the system at an
instant when the incident mass is a distance D from the rod. [L]
Determine the velocity of the center of mass at this instant. [A]

b. Determine the velocity of the center of mass of the rod after the
collision, as observed in the same frame where the rod was initially
at rest. [I]

c. Determine the velocity of the center of mass of the rod relative to
the center of mass of the system after the collision. [J]

d. Determine the angular momentum of the system, before the colli-
sion, relative to the center of mass of the rod. [B]

e. Determine the angular velocity of the rod about its own center of
mass after the collision. [E]

f. Determine the kinetic energy of the system before the collision, as
observed in the original inertial frame. [H]

g. Determine the kinetic energy of the system after the collision, as
observed in this same frame. [M]

h. Determine the Q of this reaction. [G]

i. Assuming an elastic collision, determine the value of d in terms of
L. [D]

16
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Brief Answers:

A. ~V0/2

B. (MV0d), directed up, out of page, as seen in a sketch where d is below
center.

C. MV 2
0 /60

D. d = L/
√
6

E. 6V0d/L
2

F. −(4/10)MV 2
0

G. (1/2)MV 2
0

(

3d2

L2
− 1

2

)

H. MV 2
0 /2

I. (~V0/2), same direction as original velocity of point mass.

J. Zero

K. (5/12)MV 2
0

L. Along a line joining the center of the rod to the incident mass and
half-way between the two.

M. (1/2)MV 2
0

(

1

2
+

3d2

L2

)
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