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Abstract:
In the preceding units we studied the basic concepts needed to deal with
systems consisting of many particles. Hence we can now discuss some of
the important properties of common materials (such as solids, liquids, and
gases) which consist of enormously many atoms or molecules. For most
practical applications, we can consider these substances from a macro-
scopic (i.e., large-scale) point of view without requiring detailed knowl-
edge about the individual atoms in them. We shall spend most of our
time discussing fluids (i.e., liquids and gases) because these have some re-
markable properties of great importance for the understanding of physical
and biological processes.
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SECT.

A MACROSCOPIC PROPERTIES OF MATERIALS

From a macroscopic point of view, any material (such as a solid, a
liquid, or a gas) can be described by a few simple properties. Let us
examine some of these.

DENSITY

Any small portion of a material has some volume V and some mass
M (which is the sum of the masses of all the atoms contained in this
portion). If this portion is small enough (although still large enough to
contain very many atoms), the number of atoms in it, and thus also its
mass M , is proportional to its volume V . (For example, if the volume V
of a portion of water would be 3 times as large, the number of atoms in
this portion, and thus also the mass of this portion, would be 3 times as
large.) Hence the ratio M/V is independent of the volume. This ratio is
commonly denoted by ρ (the Greek letter “rho”) and is called “density”
in accordance with this definition:

Def.

Density: The density ρ of a material at a point
P is the ratio

ρ =
M

V

where V is a small enough volume enclosing the
point P and where M is the mass of the material
within this volume.

(A-1)

In short, we can say that the density is the “mass per unit volume” (i.e.,
the mass divided by the corresponding volume).

A material is said to be “homogeneous” or “uniform” if the intrinsic
(i.e., size-independent) properties of every portion of this material are the
same. For example, if a material is homogeneous, the density is the same
at each point in the material. Then the ratio M/V has the same value
for any small volume of the material, and has therefore also this value for
any large volume. (In other words, any volume V of the material is then
small enough for finding the density.

The Def. (A-1) implies that the SI unit of density is kg/m3. The den-
sity is also often expressed in terms of the unit gram/cm3. For example,
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area A

F
`

Fig.A-1: Contact force exerted on the
surface of a portion of material by its sur-
roundings.

the density of water is 1.0 gram/cm3 = 1.0 × 103 kg/m3. Table A-1 lists
the densities of a few other homogeneous materials.

ELASTIC PROPERTIES

Any portion of a material (e.g., of a copper block) is acted on by
contact forces due to its surroundings. To examine these forces in greater
detail, consider any small part of the surface of a portion of the material.
(See Fig.A-1.) The atoms adjacent to this surface inside the portion are

then acted on by a “contact” force ~F due to the atoms adjacent to this
surface outside the portion. If this surface is small enough, the contact
force ~F is proportional to the number of atoms adjacent to this surface
and is thus proportional to the area A of this surface. (For example, if the
area of the surface were 3 times as large, the number of atoms adjacent
to the surface would also be 3 times as large.

Table A-1: Densities of some common materials
at room temperature and pressure.

material ρ( kg/m3) material ρ( kg/m3)
wood (maple) 0.7× 103 alcohol (ethyl) 0.79× 103
ice 0.92× 103 oil (olive) 0.92× 103
bone 1.6× 103 water 1.00× 103
glass 2.6× 103 blood 1.05× 103
iron 7.7× 103 glycerin 1.26× 103
copper 8.5× 103 mercury 13.6× 103
lead 11.3× 103 air 0.0012× 103

Thus the force ~F exerted on the atoms adjacent to one side of the surface
by the atoms adjacent to the other side would also be 3 times as large.)

Hence the ratio ~F/A is independent of the size of the area A. This ratio
is denoted by ~σ (the Greek letter “sigma”) and is called “stress.”

Def.
Stress: ~σ =

~F

A
(A small enough)

(A-2)
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F F

Fig.A-2: A rod pulled on both ends
by forces of equal magnitude.

In other words, the stress on a material is the contact force per unit area
exerted on the material by the material on the other side of this area.

The forces acting on any portion of a material tend to change the
spatial arrangement of the atoms relative to each other and thus to pro-
duce a deformation of the material. For example, Fig. A-2 illustrates a
rod which is being pulled from both ends by contact forces having equal
magnitudes F and opposite directions. As a result of these forces, the rod
becomes elongated (while its diameter decreases). The magnitude of the
elongation depends on the magnitude of the stress, i.e., on the ratio F/A
of the magnitude F of the applied force compared to the cross-sectional
area A of the rod. (For example, forces of the same magnitude F will
stretch a thinner rod more than a thicker one because the magnitude
F/A of the stress is larger in the case of the thinner rod which has the
smaller area A.) When the magnitude of the stress becomes too large,
the rod breaks.

Example A-1: Breaking strength of a steel wire

The tensile strength of a material is the maximum magnitude σmax

of the stress with which this material can be pulled without breaking.
The tensile strength of steel is 5× 108N/m2. What then is the maximum
magnitude Fmax of the force which breaks a steel wire of radius r = 1mm
= 10−3m in the arrangement of Fig. A-2?

By the definition of stress, Def. (A-2), Fmax = σmaxA. The cross-
sectional area A of the wire is A = πr2 = 3× 10−6m2. Hence

Fmax = σmaxA = (5× 108N/m2)(3× 10−6m2) = 1.5× 103N
(or about 3× 102 pound).

The “elastic” properties of a material are described by the relation
between the contact forces on the material and the resulting deformation
of the material. For simplicity, let us consider a portion of material whose
center of mass remains at rest so that the total external force on this
portion is zero. Let us also assume that the only external forces on this
portion are the contact forces due to its surroundings. Then we can
examine some especially simple deformations produced by various contact
forces. In particular, we may consider a small change of volume without
a change of shape (as illustrated in Fig.A-3a), or a small change of shape
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(a) (b)before beforeafter after

change of volume change of shape

Fig.A-3: Simple small deformations of a material.

without an appreciable change of volume (as illustrated in Fig. A-3b).

Figure A-4 shows a cubical portion of material subjected on all its
surfaces to contact forces having equal magnitudes and inward directions
perpendicular to these surfaces. The resulting deformation is then a de-
crease in the volume of the material without a change of shape (as illus-
trated in Fig.A-3a). If a large change of volume is produced by small
forces (e.g., if the material is a sponge), the material is said to be highly
“compressible.” But if the change of volume is negligible even if the forces
are very large (e.g., if the material is a brick), the material is said to be
“incompressible.” The density of the material remains then unchanged
irrespective of the magnitudes of the forces acting on the material. *

(a) (b)

F

F

F

F

F

F

Fig.A-4: Deformations produced by various forces. (a)
Change of volume produced by inward compressive forces.
(b) Change of shape produced by shear forces.
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* If the material of original volume V changes its volume
by an amount ∆V , the magnitude |∆V/V | of the (relative
deformation (or “strain”) is related to the magnitude | ~F/A|
of the stress by |∆V/V | = K| ~F/A|, where the quantity K is
called the “compressibility” of the material. If the material is
highly compressible, K is large. If it is incompressible, K = 0.

Figure A-4b shows a portion of material subjected on opposite sur-
faces to contact forces having equal magnitudes and opposite directions
parallel to these surfaces. (Such a contact force parallel to a surface is
called a “shear” force.) The resulting deformation is then a change of
shape with negligible change of volume (as illustrated in Fig.A-3b).

FORMS OF MATERIALS

Materials can be classified into various types on the basis of their
elastic properties. If any kind of deformation of a material can only be
produced by large contact forces, the material is called a “solid.” But
if a sufficiently slow change of shape of a material can be produced by
negligibly small shear forces, the material is called a “fluid.” (If fast
changes of shape of a fluid can only be produced by appreciable shear
forces, the fluid is said to be “viscous.” But if even fast changes of shape
can be produced by negligibly small shear forces, the fluid is called “non-
viscous” or “inviscous.”)

Fluids can be further classified into “liquids” and “gases” on the
basis of the contact forces required to produce changes in their volume.
A “liquid” is a fluid which is nearly incompressible (so that a change in
its volume can only be produced by large contact forces). A “gas” is a
fluid which is easily compressed (so that a large change in its volume can
be produced even by small forces). Furthermore, the density of a liquid
is ordinarily much larger than that of a gas.

Let us look at these different forms of materials from an atomic point
of view. In a solid, the atoms are close together and the mutual forces
between them are sufficiently strong to keep these atoms locked in nearly
fixed positions relative to each other (usually in a highly regular or “crys-
talline” arrangement). Hence any deformation of the solid can only be
produced by large external force applied to the solid. In a liquid, the
atoms or molecules are slightly further apart and thus fairly free to move
past each other. Thus changes of shape can be produced quite easily by
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small external shear forces, although large forces are required to com-
press the liquid and thus to force its atoms closer together. In a gas,
the atoms or molecules are far apart and interact only weakly with each
other. Hence both changes of shape and changes of volume are readily
produced by small external forces.
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Fig.A-5. Fig. A-6. Fig. A-7.

Understanding the Definition of Density (Cap. 1a)

A-1
(a) Example: Under standard conditions, one mole of homoge-
neous hydrogen gas, which has a mass of 2.00×10−3 kg, occupies

a volume of 22.4 liter = 2.24×10−2m3. What is the density ρ of hydrogen
gas under these conditions? (b) Relating quantities: The volume of blood
in an adult person is about 5 liter = 5×10−3m3. What is the mass of the
blood in an adult, assuming the blood is homogeneous? (Use table A-1.)
(Answer: 106)

A-2
Applicability: A hollow 20 kg drum has thin homogeneous steel
walls of density 8 × 103 kg/m3. (Fig. A-5). Either use this in-

formation to find each of the following quantities, or explain why the
quantity cannot be found. (a) The volume of the entire drum. (b) The
volume of the steel walls of the drum. (Answer: 102)

A-3
Dependence: By measuring the mass of 1 cm3 of a homogeneous
liquid, a student finds the density of the liquid. Suppose the

student had used instead one tenth of this volume, or 0.1 cm3. Would the
measured density be the same or one-tenth as large? Would the measured
mass be the same or one-tenth as large? (Answer: 104) (Suggestion: [s-
2])

Knowing About the Properties of Solids, Liquids and Gases

A-4
Compressibility and density: Suppose we have four cylindrical
containers, each fitted with a piston which can move up or down,

and we completely fill one container with oxygen gas, one with liquid
alcohol, one with liquid molasses, and one with solid ice (as shown in
Fig. A-6). (a) Which of these substances is highly compressible, so that
we can easily push the piston downward to compress the substance into
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A2

A1

Fig.A-8.

A
Block

Wire

Fig.A-9.

a smaller volume? Which of them is nearly incompressible, so that we
can only produce a negligible change in the volume of the substance by
pushing downward on the piston? (b) Which of these substances has a
density that remains nearly constant when the substance is compressed?
(Answer: 101) (Suggestion: [s-7])

A-5
Shear strength and viscosity: Suppose that we fill four balloons
with the four substances described in problem A-4, and we apply

shear forces to each substance by pushing horizontally in opposite direc-
tions on the top and bottom surfaces of the balloon as shown in Fig. A-7.
These forces can change only the shape of the substance in the balloon.
(a) Which of these substances require very small shear forces to change
shape? Which of them retains its shape even when we apply fairly large
shear forces? (b) Molasses requires large shear forces to change shape
rapidly, while oxygen requires very small shear forces to do so. Which of
these fluids is more viscous? (Answer: 108)

Understanding the Definition of Stress (Cap. 1b)

A-6
Example: The tibia (the large bone in the lower leg) varies
in thickness along its length. Near the ankle joint, the cross-

sectional area A1 of the bone is about 6.0 cm
2, while at the thinnest

part of the tibia, one-third of its length above the ankle joint, the cross-
sectional area A2 of the bone is 3.0 cm

2. (See Fig.A-8.) (a) When an
80 kg man lands with stiff legs on the ground after falling about 2meter,
the contact force ~F exerted on the bone above each of these areas by the
bone below each area is about 5.0 × 104N upward. What are the cor-
responding stresses ~σ1 and ~σ2 on the bone at each area, assuming these
areas are small enough? (b) Human bone fractures if such “compressive”
stresses exceed 1.6× 108N/m2 in magnitude. Is the man’s tibia likely to
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break when he lands on the ground? If so, will it fracture near the larger
area A1 or near the smaller area A2? (Answer: 103)

A-7
In a traction arrangement, a 15 kg metal block is suspended at
rest by a steel wire welded into a hole in the top of the block.

Consider a cross-sectional area of the wire just above the block, as shown
in Fig. A-9. A contact force equal in magnitude to the block’s weight is
thus exerted on the wire below this area by the wire above it. (a) Relating
quantities: To find the thinnest wire that is safe, suppose this contact
force produces a stress equal in magnitude to 5 × 108N/m2, the tensile
strength of steel. What is the wire’s cross-sectional area A? What is the
radius r of the wire (i.e., of its circular cross-section)? (b) Dependence:
Suppose instead that the wire has twice the radius and thus four times
the cross-sectional area of the one described in part (a). Compare the
magnitudes of the contact force and stress for this wire with those for the
previous one. (Answer: 107) (Practice: [p-1])

14
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SECT.

B PRESSURE IN A FLUID

Consider any fluid which remains at rest (i.e., which is in equilib-
rium). Then the contact force parallel to the surface of any portion of
the fluid (i.e., the shear force) must be zero, since any such non-zero force
would gradually produce changes of shape in the fluid and would thus not
leave the fluid at rest.

In any fluid at rest, the contact force acting parallel to the surface of
any portion of the fluid is thus zero. *

* This conclusion is also true for a nonviscous fluid even if it
is moving, since the shear force in such a fluid is always equal
to zero.

Hence the contact force acting on this surface due to its surroundings
must always be perpendicular to this surface. Furthermore, this contact
force is ordinarily directed inward toward the inside of the fluid on which
it acts (i.e., this force tends to compress the fluid) since the force required
to pull the fluid apart is usually negligibly small. (See Fig. B-1.) Thus we
arrive at this conclusion:

In a fluid at rest, the contact force exerted on any small
surface of a portion of the fluid by its surroundings is
directed perpendicularly inward to this surface.

(B-1)

Such a contact force perpendicular to the surface on which it acts is called
a “pressure force.”

Because of the reciprocal relation between mutual forces, Rule (B-
1) implies that the contact force exerted by any portion of a fluid on
any small surface of its surroundings must have the same magnitude but
the opposite direction as the force in Rule (B-1), i.e., this force must
be directed perpendicular to the surface outward on the surroundings.
This conclusion holds irrespective of the nature of the surroundings, e.g.,
irrespective of whether the surroundings consist of another portion of the
fluid or whether they consist of the walls of a container.

Consider a small surface near a point in the fluid. How does the
magnitude of the pressure force exerted on this surface depend on how
the surface is oriented in space (e.g., on whether it is horizontal, vertical,
or has any other orientation)? As we show in Section H, the equation of
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F
`

Fig. B-1: Force ~F exerted on the surface of a
small portion of fluid by its surroundings.

motion applied to the fluid then implies this simple result:

The magnitude of the pressure force exerted by a fluid
on a small surface near a point is independent of the
orientation of this surface.

(B-2)

Like any other contact force, the pressure force ~F on a small enough
surface is proportional to the area A of this surface. Hence the ratio F/A
is independent of A. The magnitude of this pressure force per unit area
(i.e., of this stress) is simply called the “pressure” in accordance with this
definition:

Def.

Pressure: The pressure p at a point in a fluid is
the ratio

p =
F

A

where F is the magnitude of the pressure force
exerted on the fluid on one side of a small enough
surface of area A (at this point) by the material
on the other side of this surface.

(B-3)

Note that the pressure at any point in a fluid has a unique value since it
is independent of both the size and the orientation of the small surface
considered at this point.

Example B-1: Force exerted by atmospheric pressure

The pressure p of the air (the “atmospheric” pressure) at sea level
is p = 1 × 105N/m2. What is the magnitude F of the force exerted by
the surrounding air on the top of a can of soup if this top has a radius
r = 5 cm= 5× 10−2m?

The area of the top of the can is A = πr2 = 8× 10−3m2. Because of
the reciprocal relation between mutual forces, the pressure force exerted
on the top of the can by the air is perpendicularly inward on the can and
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area A

Fig. B-2.

flexible face

Fig. B-3.

has a magnitude F = pA equal to the magnitude of the outward pressure
force of Def. (B-3) exerted on the air by the top of the can. Thus we find
that

F = pA = (1× 105N/m2)(8× 10−3m2) = 8× 102N
i.e., about the same as the weight of a man. It is only because the soup
and air inside the can exert on the top of the can a compensating outward
pressure force that the can does not collapse as a result of the pressure
exerted by the surrounding air.

Understanding the Definition of Pressure (Cap. 1c)

B-1
The faceplate of a skin-diver’s mask has an area A (which we shall
assume is small enough) of 1.5 × 10−2m2. (a) Example: When

the faceplate is vertical, as shown in Fig. B-2, the force ~F exerted on it by
the surrounding water is 3.0× 103N to the right. What is the pressure p
of the water near the faceplate? (b) Dependence: Suppose the diver now
looks downward, so that the faceplate is horizontal but is located at the
same position. Is the direction of the force ~F exerted on the faceplate
by the water the same or different? Is the magnitude of this force the
same or different? Is the water pressure near the faceplate the same or
different? (Answer: 105)

B-2
Properties: (a) List the following properties of the quantities
stress and pressure: kind of quantity, possible signs of numeri-

cal quantities, SI unit. (b) Which of these properties differ for the two
quantities? (c) Comparisons: Both stress and pressure are related to the
contact force exerted on a small enough area of a surface. Which of them
is related only to contact forces perpendicular to the surface? (Answer:
111)
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B-3
Interpretation and relating quantities: The pressure-sensing ele-
ment of an “aneroid barometer” (a mechanical device for measur-

ing atmospheric air pressure) is an evacuated can having circular top and
bottom faces of radius 3.0 cm (Fig. B-3). The flexible top face of the can
bends slightly inward under the influence of the pressure force exerted by
the surrounding air, and this deflection is indicated by a pointer on the
barometer’s dial. Let us investigate the pressure forces on the can, as-
suming that the surrounding air has uniform pressure of 1.0× 105N/m2.
(a) What are the forces exerted on the top face and on the bottom face of
the can by the surrounding air? (b) The sum of these forces is the total
vertical force exerted on the can by the surrounding air, since the sur-
rounding air exerts only horizontal forces on areas on the side of the can.
What is the total vertical force exerted on the can by the surrounding
air? (c) The air pressure inside the can is negligible. What is the total
force exerted on the top face of the can by the air inside and outside the
can? (Answer: 119)

B-4
Dependence: (a) Suppose another barometer has a can half the
radius of the one described in problem B-3, so that the area of

the top face of this smaller can is one-fourth that of the larger can. Com-
pare the air pressure forces on the top faces of these cans when both are
surrounded by air having the same pressure. (b) As a storm approaches,
the atmospheric air pressure decreases. Does the air pressure force on
the top face of such cans increase (so that the face flexes inward slightly
more) or decrease (so that the face flexes inward slightly less)? (Answer:
113) (Practice: [p-2])
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SECT.

C RELATION BETWEEN PRESSURES AT VARIOUS
POINTS

Consider any fluid at rest while under the influence of gravity near
the surface of the earth. Then the total external force on every portion of
the fluid must be zero (since the acceleration of the center of mass of every
such portion must be zero). But this total external force is the vector sum
of the pressure forces, exerted on the fluid portion by its surroundings,
and of the gravitational force exerted on the fluid portion by the earth.
The condition that the sum of these forces is zero then implies that the
pressures at various points in the fluid must be related in some definite
way. To examine how these pressures are related, we need only examine
a few simply chosen portions of the fluid.

Consider first a thin horizontal cylindrical portion of the fluid. As
illustrated in Fig. C-1, the long sides of this cylinder of fluid are parallel
to the horizontal unit vector x̂ and each end surface has a small area A.
Since the sum of all external forces on this fluid cylinder must be zero,
the sum of the horizontal component vectors of these forces must also
be zero. If the pressure at the left surface of the fluid cylinder is p1, the
pressure force on this surface of the fluid cylinder is p1Ax̂ (since this
force is directed inward perpendicular to the surface, i.e., along x̂). If the
pressure at the right side of the fluid cylinder is p2, the pressure force
on this surface of the fluid cylinder is −p2Ax̂ (since this force is inward
perpendicular to this surface, i.e., opposite to x̂). The pressure forces
on the horizontal side surfaces of the fluid cylinder are perpendicular to
these surfaces (i.e., perpendicular to x̂) so that their component vectors
parallel to i are zero. The gravitational force on the fluid cylinder is
vertically downward (and thus perpendicular to x̂) so that its component
vector parallel to x̂ is also zero. Since the sum of the component vectors
parallel to x̂ of all the external forces on the fluid cylinder must be zero,
we conclude that

p1Ax̂− p2Ax̂ = 0

Hence

p1 = p2 (C-1)

This relation must be true irrespective of the length of the horizontal
fluid cylinder, i.e., irrespective of the location of the end surfaces of this
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p A1

x̂

p A2

area A

Fig. C-1: A thin horizontal cylin-
drical portion of fluid at rest.

cylinder. Since these end surfaces are at the same height, Eq. (C-1) implies
this conclusion:

In a fluid at rest, the pressures at any two points at the
same height are equal.

(C-2)

Consider now a thin vertical cylindrical portion of the fluid. As
illustrated in Fig. C-2, the long sides of this cylinder of fluid are parallel
to the vertical unit vector ŷ and have a length h. Each end surface of the
cylinder has a small area A. Since the sum of all external forces on this
fluid cylinder must be zero, the sum of the vertical component vectors of
all these forces must also be zero. If the pressure at the bottom surface
of the fluid cylinder is p1, the pressure force on this surface of the fluid
cylinder is p1Aŷ (since this force is inward perpendicular to the surface,
i.e., upward along ŷ).

If the pressure at the top surface of the fluid cylinder is p2, the
pressure force on this surface of the fluid cylinder is −p2Aŷ (since this
force is inward perpendicular to the surface, i.e., downward opposite to
ŷ). The pressure forces on the vertical side surfaces of the fluid cylinder
are perpendicular to these surfaces (i.e., perpendicular to ŷ) so that their
component vectors parallel to ŷ are zero. The gravitational force on the

p A1

p A2 area A

ŷ

mg
h

Fig. C-2: A thin vertical cylindrical portion of
fluid at rest.
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fluid cylinder is m~g = −mgŷ since it is downward opposite to ŷ. Here
the mass m of the fluid cylinder is related to its volume V = Ah by the
density ρ of the fluid so that m = ρV = ρAh. *

* We assume that the height h is sufficiently small so that
the density ρ of the fluid is the same at all points within the
cylindrical portion of fluid.

Since the sum of the component vectors along ŷ of all the external forces
on the fluid cylinder must be zero, we conclude that

p1Aŷ − p2Aŷ − (ρAh)gŷ = 0
so that

p1 − p2 − ρhg = 0

Hence

p1 − p2 = ρgh (C-3)

or p1 = p2 + ρgh. Thus we arrive at this conclusion: If a point in a fluid
at rest is located a vertical distance h directly below another point in the
fluid, the pressure p1 at the lower point is larger than the pressure p2 at
the higher point by an amount ρgh, where ρ is the density of the fluid.
[This statement merely expresses the fact that the pressure force on the
lower surface of any fluid portion (such as that in Fig. C-2) must be larger
than the pressure force on the upper surface of this portion in order to
support the weight of this portion of fluid.]

We can use the preceding conclusion to compare the pressures at
any two points B1 and B2 in a fluid at rest, even if one point is not
directly below the other. (See Fig. C-3.) Indeed, according to Eq. (C-1),
the pressure p1 at B1 is the same as the pressure p3 at the point B3 which
is at the same level directly below B2. By using Rule (C-3) to compare
the pressures at B3 and B2, we then obtain p1−p2 = p3−p2 = ρgh where
h is the vertical distance of B1 (or B3) below B2. Thus we can summarize
the entire discussion of this section by this conclusion:

If a point B1 is a vertical distance h below any other
point B2 in a homogeneous fluid at rest, the pressures
at these points are related to the density ρ of the fluid
by

p1 − p2 = ρgh .

(C-4)
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B1

B2

B3

h
Fig. C-3: Comparison of the pressures
at any two points B1 and B2 in a fluid
at rest.

If the vertical distance h between the points is zero, Rule (C-4) implies
p1 − p2 = 0 or p1 = p2, in agreement with Rule (C-2).

Relating Pressure, Pressure Force, and Position (Cap. 2)

C-1
Figure C-4 shows two swimming pools, one shallow and one deep,
which are connected by a horizontal pipe and filled with water to

the same level. List all of the indicated points at which the water pressure
is (a) larger than that at the point P , (b) equal to that at the point P ,
and (c) smaller than that at the point P . (Answer: 115)

C-2
(a) If the water filling the pools described in problem C-1 has a
uniform density of 1.0×103 kg/m3, what is the pressure difference

p2 − p1 between the water pressures at the points 1 and 2? (b) Suppose
instead that the pools are “empty”; i.e., filled with air of uniform density
1.2 kg/m3. What is the pressure difference p2 − p1 between the air pres-
sures at the points 1 and 2? (c) In both of these situations, the pressure
p1 is equal to the atmospheric air pressure of 1.0×105N/m2. What is the
pressure p2 in each situation? (d) Consider two points in a fluid, where
one point is no more than a few meters higher than the other. For the
precision we are using, are the fluid pressures at these points the same if
the fluid is a liquid? Are they the same if the fluid is a gas? (Answer:
112)

C-3
Consider the two pools filled with water as shown in Fig. C-4. (a)
The submerged side of the deep pool is a rectangle 3.0meter high

and 10meter long, and so the submerged side has an area A = 30m2. By
applying the definition of pressure, a student states that the magnitude
F of the pressure force exerted on this submerged side by the water is
given by F = pA, where p = 1.0× 105N/m2 is the water pressure at the
surface. Why has the student incorrectly applied this relation? (b) The
bottom of the deep pool is a rectangle 4.0meter wide and 10meter long.
What is the magnitude F of the pressure force exerted on the bottom by
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Fig. C-4.

the water? Why can one correctly apply the relation F = pA in this case?
(Answer: 110)
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SECT.

D APPLICATIONS TO FLUIDS AT REST

PRESSURE BELOW THE SURFACE OF A FLUID

Suppose that the pressure at the top surface of a homogeneous fluid
at rest is pa. Then we know from Rule (C-4) that the pressure p at any
point at a depth h below the surface of the fluid must be

p = pa + ρgh (D-1)

Thus the pressure in a fluid is larger at points which are farther below
its surface. (This larger pressure is, of course, due to the larger weight of
fluid which must be supported above the lower points.) More specifically,
Eq. (D-1) tells us that the pressure at a depth h below the surface of the
fluid is larger than that at its surface by an amount ρgh. In the case of
a liquid such as water, whose density is fairly large (about 103 kg/m3),
the pressure inside the liquid increases quite rapidly with increasing
depth. (Thus animals which live at great depths below the surface of
the ocean must have physiological characteristics which allow them to
survive despite the large pressure forces exerted on them.) In the case
of a gas, such as air, the density is typically about a 1000 times smaller.
Hence the pressure in gas changes by a negligible amount over a vertical
distance of a few meters. On the other hand, the pressure does change
by a significant amount if the vertical distance is sufficiently large. For
example, the layer of air (the “atmosphere”) above the surface of the
earth is several hundred kilometers thick. Hence the pressure of the
air at the bottom of the atmosphere near the surface of the earth (the
so-called “atmospheric pressure”) is much larger than the nearly zero
pressure at the top of the atmosphere. *

* The atmospheric pressure cannot be calculated directly from
Eq. (D-1) since the air is quite compressible and is thus not
homogeneous. (Indeed, the density of the air decreases with
increasing height above the surface of the earth.)

Example D-1: Pressure below the surface of the ocean

The atmospheric pressure pa at sea level (i.e., at the surface of the
ocean) is 1×105N/m2. What then is the pressure p experienced by a fish
(or a diver) at a depth 100meter below the surface of the ocean?
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(a) (b)

Fig.D-1: Surface levels of a liquid. (a) Container of compli-
cated shape. (b) Device for determining horizontal levels.

Since the density of sea water is approximately 1.0× 103 kg/m3, the
pressure difference due to this depth of water is

p− pa = ρgh = (1.0× 103 kg/m3)(10m/s2)(100m) = 10× 105N/m2

Hence p = pa+ρgh = 11×105N/m2. Thus this pressure is 11 times larger
than the atmospheric pressure experienced at sea level.

SURFACE LEVELS OF LIQUIDS

Consider a liquid at rest in a container and suppose that two parts
of the liquid surface are in contact with gas at the same pressure p0. (For
example, the two parts of the liquid surface might be the liquid surfaces
in the two parts of the container of Fig.D-1, where both these surfaces are
in contact with the air in the surrounding atmosphere.) Then the same
pressure difference p− p0 exists between the pressure p at some point B
in the liquid and the pressure p0 at each part of the liquid surface. Hence
the relation p− p0 = ρgh implies that the vertical distance h between B
and each part of the liquid surface must also be the same, i.e., that each
part of the liquid surface must be at the same height.

The preceding conclusion must be true no matter how complicated
the shape of the container might be. For example, Fig.D-1b illustrates
a device consisting of two glass tubes connected by a long garden hose.
When filled with water at rest, the surfaces of the water in both glass
tubes must then be at the same height (since they are both in contact
with air at atmospheric pressure). This device is of practical utility in
constructing buildings, since it can be used to determine whether two
distant points in the building are at the same level.
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h

P2

P1

Fig.D-2: Manometer consisting of a liquid con-
tained in a U-shaped tube.

MEASUREMENT OF PRESSURE

Consider a liquid of density ρ at rest in the U-shaped tube shown
in Fig.D-2. Then the pressures p1 and p2 at the surfaces of the liquid
in the two sides of the tube must be related to the vertical distance h
between these surfaces by the relation p1 − p2 = ρgh, the surface at
the higher pressure being below that at the lower pressure. If we know
the density of the liquid, we can then measure the vertical distance h
between the two liquid surfaces in order to determine the difference in
pressure at these surfaces. Thus we can use the liquid-filled U-shaped
tube as a “manometer” (i.e., as a device for measuring pressure or pressure
differences).

If p1 is the pressure of the gas above the liquid surface in the left
side of the U-shaped tube and p2 is the pressure of the gas above the
liquid surface in the right side of the tube, the measured vertical distance
h between the liquid surfaces allows one to find the pressure difference
p1 − p2 between the two gases. If the region above the liquid surface on
the right side of the tube is a vacuum, p2 = 0 and the vertical distance
h can be used to find the pressure p1 = ρgh of the gas above the liquid
surface on the left side. For example, if the left side of the tube is open
to the surrounding atmosphere, p1 is simply the atmospheric pressure.
(A manometer used for measuring the atmospheric pressure is called a
“barometer.”)

To measure the atmospheric pressure with the previous arrangement,
one commonly uses a tube filled with mercury. Since this liquid has a very
large density (ρ = 13.6×103 kg/m3), the height h between the liquid sur-
faces can be kept conveniently small. The atmospheric pressure pa is
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found to vary slightly depending on weather conditions, but its normal
value corresponds to a height of mercury equal to h = 0.760meter. The
corresponding value of the atmospheric pressure is thus

pa = ρgh = (13.6× 103m3)(9.80m/s2)(0.760m)

or

pa = 1.01× 105N/m2 (D-2)

Pressures are often expressed in various common units such as “atmo-
sphere” (indicating the conventionally accepted standard value pa of at-
mospheric pressure at sea level) or “mm-Hg” (indicating the particular
pressure which would support the specified height, in millimeters, of a
column of mercury.) These units are defined in terms of the SI unit
( newton/meter2) so that

pa = 1atmos. = 760mm of Hg = 1.01325× 105N/m2 (D-3)

GAUGE PRESSURE

Since we usually work in an environment of air at atmospheric
pressure, it is often convenient to indicate how much a pressure p
differs from the standard atmospheric pressure pa specified in Eq. (D-3).
Accordingly, we introduce this definition of the “gauge pressure” p∗

corresponding to the actual pressure p:

Def. Gauge pressure: p∗ = p− pa
(D-4)

For example, a mercury-filled manometer is commonly used to mea-
sure the difference between the arterial blood pressure pb and the atmo-
spheric pressure pa. *

* One actually measures what pressure of air in a cuff sur-
rounding the arm is equal to the pressure of the blood in the
artery in the arm.

The measured “systolic” pressure (about 120mm-Hg) is then the gauge
pressure p∗b = pb − pa of the blood.

According to Def. (D-4), the gauge pressure is less than the actual
pressure and is negative when the actual pressure is less than the stan-
dard atmospheric pressure. But the difference between any two gauge
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Fig.D-3: A hydraulic press

pressures is simply equal to the difference between the corresponding
actual pressures since

p∗1 − p∗2 = (p1 − pa)− (p2 − pa) = p1 − p2 (D-5)

HYDRAULIC PRESS

Consider the arrangement of Fig.D-3 where the two surfaces of the
liquid at rest in the container are in contact with movable pistons. For
simplicity, assume that the two surfaces of the liquid are at the same
height so that the pressures p1 and p2 at the liquid surfaces are equal.
The pressure p at each surface is related to the magnitude F of the force
on this surface and to the area A of this surface (and of the piston on
top of it) by the definition p = F/A. Hence the equality p1 = p2 of the
pressures at the pistons implies that the magnitudes of the forces on the
pistons are related to that

F1

A1

=
F2

A2

(D-6)

Thus the magnitudes of the forces exerted on the pistons are not equal
unless the areas of the pistons are equal. Indeed, if A2 is much larger
than A1, the magnitude F2 of the force exerted by the liquid on the
larger piston is much larger than the magnitude F1 of the force exerted
by the liquid on the smaller piston (or of the magnitude F1 of the force
exerted on the liquid by the smaller piston). The device illustrated in
Fig.D-3, and called a “hydraulic press,” can thus be used to produce a
large force on a large piston by applying a much smaller force on a small
piston. For example, a person can exert a relatively small force on such
a hydraulic press in order to support a very heavy object, such as a car.

In these and later problems, assume that atmospheric air has the stan-
dard atmospheric air pressure pa unless stated otherwise. For conve-
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nience, we shall use the approximate value pa = 1.00× 105N/m2.

Knowing About the Properties of Fluid Surfaces

D-1
Consider a horizontal surface between two fluids at rest (e.g., the
surface between the water in a glass and the air). If we call the

upper fluid A and the lower fluid B, is the pressure in fluid A just above
this surface larger than, equal to, or smaller than the pressure in fluid B
just below this surface? (Answer: 127)

D-2
Consider this statement: “All parts of the surface of a liquid in
a container near the earth’s surface have the same height.” (a)

Using this statement, a student decides that Fig.D-2 cannot be correct,
since it shows two parts of a liquid surface at different heights. What
important condition on this statement has the student overlooked? (b)
Another student uses this statement to assert that the surface of the water
contained in a river must be level, so that he cannot understand why the
surface of a large river slopes downward toward the sea. What important
condition on this statement has the student overlooked? (Answer: 117)

Knowing About Gauge Pressure and Units of Pressure

D-3
The gauge pressure of the air in an automobile tire is usually
about p∗ = 2atmosphere. (a) Express this gauge pressure in

terms of N/m2. (b) What is the pressure p of the air in such a tire?
Express your answer in terms of N/m2 and in terms of atmosphere. (c)
What is the gauge pressure of air having the standard atmospheric pres-
sure pa? (Answer: 114)

D-4
The minimum or “diastolic” blood pressure in a person’s brachial
artery is about 1.10 × 105N/m2. (a) What is the corresponding

diastolic gauge pressure in N/m2? (b) Express this gauge pressure in
terms of the unit mm-Hg. (Answer: 121)

D-5
Figure D-4 shows a “sphygmomanometer” used to measure blood
pressure. The “manometer” consists of a vertical tube, which

is open to the atmosphere at the top, immersed in a pool of mercury
in a reservoir. The closed space above the mercury in the reservoir is
connected by a tube to a bulb and an inflatable cuff which is placed around
the patient’s upper arm. The bulb is used to pump air into the cuff,
thus increasing the air pressure in the cuff and constricting the brachial
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artery until the artery barely opens when the blood in the artery has its
maximum or “systolic” pressure. The resulting spurt of blood through
the constriction can be heard in a stethoscope. The air pressure in the
cuff is then equal to the patient’s systolic blood pressure.

(a) If the systolic blood pressure is 1.17×105N/m2, what is the pressure
in the mercury at its surface in the reservoir and at its surface in
the tube?

(b) Using the value 1.4× 104 kg/m3 for the density of mercury, find the
height of the mercury column in the tube (i.e., find the height of
the mercury surface in the tube above the mercury surface in the
reservoir). Express your answer in terms of mm = 10−3meter.

(c) Does the height of the mercury column indicate directly (in mm-Hg)
the patient’s systolic blood pressure or gauge pressure?

(Answer: 118) (Suggestion: [s-10])

D-6
The “U-tube” manometer shown in Fig.D-5 is used to measure
the lung air pressure a patient produces by inhaling or exhal-

ing. One side of the tube is open to the atmosphere, while the other is
connected by a tube to the patient’s mouth and thus to his lungs. The
patient’s nose is clamped to prevent air from passing through it. The
liquid in the manometer tube is water, of density 1.0× 103 kg/m3.

(a) At the time illustrated in Fig.D-5, is the gauge pressure of the
stationary air in the patient’s lungs larger than, equal to, or smaller
than the zero gauge pressure of the atmospheric air?
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(b) If the vertical distance h = 1.0meter, what is the gauge pressure of
the air in the patient’s lungs?

(c) If the manometer tube contained mercury instead of water, what
would be the vertical distance h between the liquid surfaces for the
same gauge pressure in the patient’s lungs? Use the value 1.4 ×
104 kg/m3 for the density of mercury.

(d) In measuring small gauge pressures with a liquid-filled manometer,
which of the following should you use to obtain a large and easily-
measured vertical distance h between the liquid surfaces: a liquid
with large density (e.g., mercury) or a liquid with small density
(e.g., oil)?

(Answer: 116) (Suggestion: [s-5])

D-7
A closed cylindrical container has a bottom of area A and is filled
with a liquid of density ρ to a height h above the bottom. The

region above the liquid has been evacuated, so that the pressure of the
gas above the liquid is negligible.

(a) Write an expression for the magnitude F of the pressure force ex-
erted by the liquid on the container bottom.

(b) Review: The volume of the liquid in the container is V = Ah. Using
this result, express the mass m and weight w of the liquid in terms
of h and A. Is the magnitude of the pressure force exerted by the
liquid on the container bottom equal to the weight of the liquid?

(Answer: 133) More practice for this Capability: [p-3], [p-4]
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SECT.

E BUOYANT FORCE

Suppose that an object is surrounded by a fluid at rest. (This fluid
may consist of several different fluids, e.g., it might consist of water and
air, as indicated in Fig. E-1a.) Then the total force exerted on the object

by the surrounding fluid is called the “buoyant force” ~Fb exerted on the
object by the surrounding fluid. How can we find this buoyant force?

We can use the following simple argument to find the buoyant force
without the need for detailed calculation. Let us compare the situation
of Fig. E-1a, showing the object surrounded by fluid, with the situation
of Fig. E-1b where the object is absent. Consider, in this Fig. E-1b,
the portion of fluid occupied by the object in the original situation of
Fig. E-1a. (This portion of fluid is called the “fluid displaced by the

object.”) The buoyant force ~Fb exerted on this fluid portion by the
surrounding fluid must then be the same as the buoyant force exerted on
the object in Fig. E-1a. (The reason is that the pressure force exerted by
the surrounding fluid on any small surface of the object is the same as
the pressure force on the corresponding small surface of the fluid portion,
because both these small surfaces are at the same depth.) But since the
fluid in Fig. E-1b is at rest, the total external force on the fluid portion
in Fig. E-1b must be zero. This total external force is the sum of the
buoyant force ~Fb and of the gravitational force md~g on the fluid portion
of mass md. (In other words, md is the mass of the fluid displaced by the
object.) Hence

~Fb +md~g = 0

or

~Fb = −md~g (E-1)

This result shows that the direction of the buoyant force ~Fb is oppo-
site to that of the gravitational force. Hence the direction of the buoy-
ant force is vertically upward. Furthermore the magnitude of the buoy-
ant force is equal to md~g, the weight of the fluid portion displaced by
the object in Fig. E-1a. Thus we arrive at the conclusion discovered by
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(a) air

water

(b)

Fig. E-1: Buoyant force on an object. (a) Object submerged
in a fluid (e.g., water and air). (b) Fluid without the object.

Archimedes (287-227 B.C.):

Archimedes’ principle: The buoyant force on an object
is directed upward and has a magnitude equal to the
total weight of the fluid displaced by this object.

(E-2)

We can summarize this principle by writing

Fb = wd upward (E-3)

where wd is the total weight of the displaced fluid, i.e., the sum of the
weights of all fluids displaced by the object. Thus,

for each fluid, wd = mdg = ρVdg (E-4)

where Vd is the volume of displaced homogeneous fluid of density ρ and
corresponding mass md = ρVd.

Since the density of air is very small, the weight of air displaced by an
object is usually negligibly small. For example, in a situation such as that
of Fig. E-1a, the magnitude of the buoyant force is essentially equal to the
weight of the water displaced by the object, since the weight of the air
displaced by the object is very much smaller and can thus be neglected.

DIRECT CALCULATION OF THE BUOYANT FORCE

To understand better how the buoyant force arises, let us calculate
the total force exerted by the surrounding fluid on a simple object com-
pletely immersed in a homogeneous fluid. To be specific, we shall consider
an object which has rectangular sides, the bottom and top sides each hav-
ing a small area A and the other sides being vertical. (See Fig. E-2.) If
the pressure at the bottom of this object is p1, the pressure force exerted
on this side by the surrounding fluid is p1Aŷ, where ŷ is a unit vector in
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Fig. E-2: Buoyant force on a thin vertical object.

the upward direction. If the pressure at the top side of the object is p2,
the pressure force exerted on this side by the surrounding fluid is −p2Aŷ
(since it is downward, opposite to ŷ). The pressure forces on opposite
vertical sides have equal magnitudes and opposite directions. Thus the
sum of the pressure forces on these vertical sides is zero. Hence the total
buoyant force exerted on the object by the surrounding fluid is merely
the sum of the pressure forces on the bottom and top sides of the object.
Accordingly

~Fb = p1Aŷ − p2Aŷ = (p1 − p2)Aŷ (E-5)

If the object has a vertical length h, the pressures at the bottom and top
surfaces of the object are related so that p1 − p2 = ρgh where ρ is the
density of the fluid. Thus.Eq. (E-4) becomes

~Fb = ρghAŷ = ρgV ŷ = mdgŷ (E-6)

where V = Ah is the volume of the object (and thus the volume of the
fluid displaced by the completely immersed object) and wheremd = ρV is
the mass of this displaced fluid. Hence Eq. (E-6) shows that the buoyant
force is upward and has a magnitude equal to the weight mdg of the fluid
displaced by the object.

Thus we arrive again at Archimedes’ principle stated in Rule (E-2).
*

* The preceding calculation can readily be extended to the
case where the object is immersed in an inhomogeneous fluid
or to an object of any shape (since any such object can be
regarded as consisting of many thin vertical objects of the
type considered in our simple example).
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DISCUSSION

If an object is completely immersed in a homogeneous fluid, the vol-
ume Vd of fluid displaced by the object is simply equal to the volume V0

of the object. Hence the weight of the displaced fluid (of density ρ) is
ρV0g. According to Archimedes’ principle, the magnitude of the upward
buoyant force on the object is then Fb = ρV0g. If Fb is smaller than the
weight of the object (i.e., smaller than the magnitude Fg of the downward
gravitational force on the object), the total external force on the object is
directed downward and the object sinks to the bottom of the fluid. If Fb

is equal to the weight of the object, the total external force on the object
is zero and the object remains at rest in the middle of the fluid. If Fb is
larger than the weight of the object, the total external force on the object
is directed upward and the object rises to the top of the fluid.

Consider the last situation in the case where the fluid is a liquid
with air above its top surface. If the density ρ0 of the object is less than
the density ρ of the liquid, the object rises to the surface of the liquid
and emerges through it (so as to remain only partially submerged in the
liquid). Since the weight of air displaced by the object is negligibly small,
the magnitude of the buoyant force on the object is always equal to the
weight of the liquid displaced by the object. But, as the object emerges
through the surface, the volume of the object submerged below the liquid
surface decreases. This decreased volume of liquid displaced by the object
then results in a decreased buoyant force on the object. Thus the object
finally comes to rest when it is submerged below the liquid to such an
extent that the magnitude of the upward buoyant force on the object
(i.e., the weight of the liquid actually displaced by the object) is just
equal to the weight of the object.

Example E-1: Homogeneous object floating in a liquid

Suppose that a homogeneous object, having a density ρ0 smaller
than the density ρ of a liquid, floats at the surface of this liquid. Then
the part of the object submerged below the surface of the liquid has some
volume Vd which is the volume of the liquid displaced by the object. (See

Fig. E-3.) The buoyant force on the object is then ~Fb = ρVdgŷ if ŷ denotes
a unit vector in the upward direction. If the object has a volume V0, the
mass of the object is ρ0V0 so that the gravitational force on the object if
~Fg = −ρ0V0gŷ (because this force is downward, opposite to ŷ). Since the

floating object is at rest, the total force ~F on the object must be zero so
that
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Fig. E-3: Object floating in a liquid.

~F = ~Fg + ~Fb = −ρ0V0gŷ + ρVdgŷ = 0

Hence

ρ0V0 = ρVd

Thus the fraction Vd/V0 of the volume of the object submerged below the
level of the liquid is equal to

Vd

V0

=
ρ0

ρ
(E-6)

For example, if the object is a block of wood (of density ρ0 = 0.7 ×
103 kg/m3) submerged in water (of density ρ = 1.0×103 kg/m3), Vd/V0 =
0.7.

If a homogeneous object has a density ρ0 larger than the density ρ
of the liquid in which it is immersed, the object sinks since its weight is
then larger than the maximum magnitude of the buoyant force on the
object (i.e., larger than the weight of the liquid displaced by the object
when it is completely immersed in the liquid). But if the object is hollow,
the volume of liquid displaced by the object can be much larger than
the actual volume of material in the object. Hence the magnitude of the
buoyant force on the object can be much larger than the weight of the
material in the object. This is why it is possible to build floating ships of
steel, despite the fact that the density of steel is much larger than that
of water.

When finding the buoyant force on an object immersed in a
liquid, you may neglect the weight of any gas displaced by
the object as negligible in comparison with the weight of the
liquid displaced by the object.
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(1) (2) (3) (4)

Fig. E-4.

Understanding Archimedes’ Principle (Cap. 1d)

E-1
Statement and example: Suppose a homogeneous solid cube of
volume V0 = 1 cm

3 = 1 × 10−6m3 and density ρ0 is held rigidly
on a thin rod and immersed by different amounts in a liquid of density
ρl which has gas of density ρg above it. (a) For each of the situations
shown in Fig. E-4, use the symbols provided to write an expression for the
magnitude Fb of the buoyant force exerted on the cube by the surrounding
fluids. (Half of the cube is submerged in situation 2.) (b) Suppose that
the liquid is water of density 1 × 103 kg/m3, the gas is air of density
1 kg/m3, and the cube is made of wood of density 7 × 102 kg/m3. What
is the buoyant force Fb on the cube in situations 1 and 2 of Fig. E-4? (c)
Dependence: Consider a cube made of lead having a density 16 times that
of the wood cube. Compare the buoyant force on this cube in situation 2
with the buoyant force on the wood cube in the same situation. (Answer:
125) (Suggestion: [s-11])

E-2
Interpretation: Use Table E-1 to answer these questions: (a) A
rectangular barge 10meter long and 5.0meter wide has vertical

sides 2.0meter high and a flat bottom. When this barge is empty, it floats
at rest with its bottom 0.20meter below the water surface. What is the
buoyant force exerted on the barge by the surrounding air and water?
(b) A child’s helium-filled balloon is a sphere of radius 10 cm. What is
the buoyant force on this balloon due to the surrounding air, which has
a density of 1.2 kg/m3? (Answer: 120) (Suggestion: [s-9])
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A

Fig. E-5.

swim bladder

Fig. E-6.

Solid Dimensions Volume

Rectangular Parallelopiped

L W

H
V = LWH

Cylinder area A
L

V = AL

Sphere
R

V = (4/3)πR3

Table E-1: Volumes of selected solids.

E-3
Relating quantities: A “hydrometer” used to measure the density
of liquids such as urine consists of a circular glass cylinder, of

cross-sectional area A = 2.0 cm2 and height 6.0 cm, which is weighted
at the bottom so that it will float upright (Fig. E-5). The mass of this
hydrometer is 8.0 gram. When the hydrometer floats at rest in a urine
sample, the magnitude of the buoyant force exerted on the hydrometer
is equal to the hydrometer’s weight. Suppose that the bottom of the
hydrometer is 3.6 cm below the urine surface. What is the density of the
urine? (Answer: 124)

E-4
Dependence: Suppose the hydrometer described in problem E-3
is placed in urine of smaller density, where it again floats at rest.

(a) Is the buoyant force exerted on the hydrometer larger, smaller, or the
same in this situation? (b) Is the submerged volume of the hydrometer
(or the depth of its bottom below the urine surface) larger, smaller, or
the same in this situation? (Answer: 128) (Suggestion: [s-8])

Now: Go to tutorial section E.

38



MISN-0-417 E-8

Applying Archimedes’ Principle And ~F = m~a (Cap. 3)

E-5
Consider the empty barge described in part a of problem E-2 (a)
What is the mass of the barge? (b) To illustrate the huge carrying

capacity of such a barge, find the mass of ore this barge supports when
it floats at rest with its bottom 1.5meter below the water surface. (c)
Suppose that this barge is loaded in the fresh water of a river and is then
towed to sea. The density of sea water is slightly larger than that of fresh
water. When the barge is at rest, is the depth of the barge bottom below
the surface larger, smaller, or the same in sea water as it is in fresh water?
(Answer: 122) (Suggestion: [s-12])

E-6
Fish have a “swim bladder,” a thin-walled sac filled with air which
the fish extracts from its bloodstream (Fig. E-6). By inflating or

deflating this bladder, the fish can increase or decrease its volume V
without changing its mass m. Consider a fish of mass m = 5.0 kg which
is initially floating at rest while completely submerged in water of density
1.0 × 103 kg/m3. (a) What is the buoyant force ~Fb on the fish? What
is the volume V of the fish? Is the average density ρf = m/V of the
fish larger than, equal to, or smaller than the density of the water? (b)
Suppose the fish now inflates its swim bladder slightly, thus increasing
the volume V of the fish. What happens to the buoyant force ~Fb on
the fish and the average density of of the fish? Does the fish sink, rise, or
remain at rest? (c) Suppose instead that the fish deflates its swim bladder
slightly. Answer the questions in part (b) for this situation. (Answer:
126) (Practice: [p-5])
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SECT.

F SUMMARY

DEFINITIONS

density; Def. (A-1)

stress; Def. (A-2)

pressure; Def. (B-3)

gauge pressure; Eq. (D-3)

IMPORTANT RESULTS

Pressure force on a fluid: Rule (B-1), Rule (B-2)

Pressure force on any small surface of fluid portion is directed per-
pendicularly inward and independent of orientation of surface.

Definition of pressure: Def. (B-3)

p = F/A where F is magnitude of pressure force and A is area of
surface.

Relation between pressures in a fluid at rest: Rule (C-4)

p1 − p2 = ρgh

Buoyant force on an object: Rule (E-2). Eq. (E-3), Eq. (E-4)

Fb = wd upward, where wd =total weight of displaced fluid

(For each fluid, wd = ρVdg)

NEW CAPABILITIES

You should have acquired the ability to:

(1) Understand these relations:

(a) the definition of density ρ = m/V (Sec. A),

(b) the definition of stress ~σ = ~F/A (Sec. A, [p-1]),

(c) the definition of pressure p = F/A (Sec. B, [p-2]),

(d) Archimedes’ principle ~Fb = wd upward, where wd = ρVdg for each
fluid (Sec. E).

(2) For a system of one or more fluids at rest, relate the positions of two
points to the pressures or gauge pressures at these points or to the
pressure forces exerted by the fluid near these points. (Sects. C and
D, [p-3], [p-4].
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(3) Apply Archimedes’ principle and the equation of motion to relate
quantities describing the buoyant force on an object at rest in a fluid
to quantities describing the remaining forces on the object. (Sec. E,
[p-5]).

Applying Relations for Solids and Fluids At Rest (Cap. 1, 2, 3)

F-1
What would be the magnitude of the pressure force exerted by
the sea water on a 1.0 cm2 area on the surface of an animal living

at the bottom of the Java Trench in the Indian Ocean? The depth of this
trench is 7.5 kilometer. (Assume that sea water has a uniform density of
1.03× 103 kg/m3.) (Answer: 131)

F-2
An iceberg of uniform density ρi and volume Vi f1oats at rest in
sea water of density ρw. (a) Write an expression for the mass Mi

of the iceberg. (b) Write an expression for the submerged volume Vs of
the iceberg (i.e., the volume of the iceberg below the water surface). (c)
What is the fraction Vs/Vi of the iceberg’s volume that is below the water
surface? Express your answer in terms of ρi and ρw (d) Use the values
ρi = 0.93× 103 kg/m3 and ρw = 1.03× 103 kg/m3 to find the fraction of
the volume of the iceberg that is below the water surface. (Answer: 129)

F-3
A healthy person cannot expand the chest to breathe if the pres-
sure outside the chest is more than about 5 × 103N/m2 larger

than the pressure of the air in the lungs. Suppose such a person is using
a “snorkel” tube to breathe atmospheric air while swimming underwa-
ter. If the air pressure in this person’s lungs is equal to the atmospheric
pressure, what is the depth of the person’s chest below the water surface
when the water pressure outside the chest exceeds the lung air pressure
by 5 × 103N/m2? (This is the maximum possible depth for snorkeling.)
(Answer: 132)

F-4
Sharpening a dull knife greatly decreases the thickness of the cut-
ting edge and thus the area of the knife in contact with the mate-

rial being cut. (a) Suppose we hold first a dull knife, and then the same
knife after sharpening, so that it exerts the same force on some material.
Is the stress produced on the material larger, smaller or the same for the
dull knife as it is for the sharp one? (b) To barely cut any material, a
knife must produce a certain minimum stress on the material. To produce
this stress, must a dull knife exert on the material the same force as a
sharp knife, a smaller force, or a larger force? Does this result agree with
your experience that sharp knives cut more easily? (Answer: 134)
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F-5
To “suck” liquid up a straw, a person expands the mouth cavity or
lungs, thus decreasing the air pressure in these cavities and above

the liquid in the straw. (a) If the person’s lips are 20 cm above the surface
of the lemonade (of density 1.0× 103 kg/m3) in a glass, what air pressure
must the person produce in the mouth so that the lemonade surface in the
straw just reaches the lips? (b) The minimum gauge pressure a person
can produce in the air in the mouth is about −76mm-Hg. What is the
corresponding maximum height to which a person can raise the lemonade
surface in a straw? (This is the height of the tallest practical straw for
sipping lemonade!) (c) Answer the preceding question if the liquid is
not lemonade but gin, which has a smaller density of 0.92 × 103 kg/m3.
(Answer: 109)

Note: Further applications are provided in tutorial section F.
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SECT.

G PROBLEMS

G-1
Using a hydrometer to measure the specific gravity of a liquid:
The “specific gravity” of a substance is defined as the ratio ρs/ρw,

where ρs is the density of the substance and ρw is the density of water. A
“hydrometer” is often used to measure the specific gravity of liquids (e.g.,
battery acid specific gravity, an indicator of the “charge” of the battery).
Consider the hydrometer of Fig.G-1, which has a glass bulb containing
lead shot and a vertical glass stem of cross-sectional area A. When this
hydrometer floats at rest in water, its entire volume V is submerged.
Suppose that when this hydrometer floats at rest in a liquid, the top of
its stem is a distance h above the liquid surface. (a) Is the density ρs of
the liquid larger or smaller than the density ρw of water? (b) Express the
specific gravity ρs/ρw of the liquid in terms of V , h, and A. (Answer:
123) (Suggestion: [s-3])

G-2
Measuring the specific gravity of a solid: Consider a sample of
some homogeneous solid having a density ρs and a weight w. The

specific gravity of the substance (see problem

G-1
F: G2. (a) Find an expression for the specific gravity ρs/ρw of
the substance in terms of F and w. (b) For a sample of glass,

F = (2/3)w (i.e., the measured weight of the sample when immersed in
water is two-thirds of its actual weight). What is the specific gravity of
the glass in this sample? (Answer: 138) (Suggestion: [s-1])

G-3
Sensitivity of the ear: A person with good hearing can barely
hear a sound which causes the air pressure outside the eardrum

to differ from the air pressure behind the eardrum by about 3×10−5N/m2.
What is the magnitude of the total force exerted by the air on the eardrum
under these conditions? The diameter of the eardrum is about 0.6 cm.
(Answer: 136) (Suggestion: [s-6])

G-4
Ear pain due to changes in height: Because of blockage of the
Eustachian tube, the air pressure behind the eardrum of a person

with a cold remains roughly constant over short time periods. Suppose
such a person rides downward in an elevator. What distance can this
person travel before the difference in pressure across the eardrum reaches
300N/m2? This value marks the threshold of pain in human hearing.
(b) Answer the preceding question if the person dives downward in a
swimming pool. (Answer: 130)
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G-5
Change in water level due to melting ice: A homogeneous ice
cube floats at rest in a glass of water. When the ice cube has

melted completely, is the water level in the glass higher, lower, or the
same as before? (Answer: 135)

G-6
Change in water level due to discarding a load of scrap: A barge
loaded with scrap iron floats at rest in a canal lock. The lock gates

and sluices are closed, so that the volume of water in the lock remains
constant. If the scrap iron is thrown overboard and sinks to the bottom
of the lock, does the level of the water in the lock rise, fall, or remain the
same? (Answer: 137)

Note: Additional problems are provided in tutorial section G.

A

Fig.G-1.

F
`

Fig.G-2.
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SECT.

H DEPENDENCE OF PRESSURE FORCE ON ORIEN-
TATION OF A SURFACE

To examine how the pressure force on a small surface near a point B
depends on the orientation of this surface, consider a small wedge-shaped
portion of fluid enclosing the point B and having two surfaces 1 and 2
which have different orientations but the same area A. (See Fig.H-1.)

Let us then apply the equation of motion m~a = ~F to this small wedge of
fluid of mass m. The total external force on this wedge is the sum of the
gravitational force m~g and of the pressure forces perpendicular to all the
surfaces of the wedge. Hence the equation of motion of the wedge is

m~a = m~g + (sum of all pressure forces) (H-1)

But if the wedge is so small that all its surfaces are almost at the point
B, the volume V of the wedge, and thus also its mass m = ρV (where
ρ is the density of the fluid), is negligibly small. Hence (1) implies that
the pressure forces on very small surfaces near a point must be related so
that

sum of pressure forces = 0 (H-2)

In particular, the sum of the component vectors of these pressure forces
along the direction x̂ parallel to the surface 3 of the wedge in Fig.H-1
must then also be zero. But this component vector of the pressure force
~F1 on the surface 1 is F1 cos θx̂; this component vector of the pressure
force ~F2 on surface 2 is −F2 cos θx̂; and this component vector of the
pressure force ~F3 is zero since this force is perpendicular to x̂. Hence (2)
implies that

F1 cos θx̂− F2 cos θx̂ = 0

so that

F1 = F2 (H-3)

In other words, no matter what the relative orientation of the surfaces 1
and 2 may be, the magnitudes of the pressure forces on these surfaces are
always the same. Thus we arrive at Rule (B-2).
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x̂
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q B

3
Fig.H-1: A small wedge-
shape portion of fluid sur-
rounding the point B.
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TUTORIAL FOR E

APPLYING ARCHIMEDES’ PRINCIPLE AND ~F = m~a

e-1 PURPOSE: When an object is at rest in a gas or a liquid, the
equation of motion states that the total force on the object (i.e., the
vector sum of the buoyant force on the object and the other forces on the
object) must be zero. The purpose of the following frame is to illustrate
how we can use this statement to relate a variety of quantities describing
the forces acting on the object. Such quantities include the dimensions
of the fluid volume displaced by the object, the density and volume (or
the mass) of the object, and the density of the fluid. As usual, we shall
follow the useful problem-solving strategy outlined in text section D of
Unit 409.

e-2 A METHOD FOR APPLYING ARCHIMEDES’ PRINCIPLE

AND ~F = m~a: Let us systematically solve this problem:

What is the surface area of a 20 cm thick ice floe that can barely
support an 80 kg man while floating at rest in sea water of density
1.03 × 103 kg/m3? When the man sits on such a floe, it floats at rest
with its top surface level with the water surface. Assume that the floe
has vertical sides and a flat top, and that it is formed of homogeneous ice
having a density of 0.93× 103 kg/m3. (The volume of this floe is given by
its area multiplied by its thickness.)

DESCRIPTION:

Diagram:

m
area A

T

Known information:

Thickness of floe: T = 0.20meter.

Density of ice forming floe: ρ1 = 0.93× 103 kg/m3
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Volume of floe: V = AT , where A is its surface area.

Mass of man: m = 80 kg.

Density of water: ρw = 1.03× 103 kg/m3.

Desired information:

Surface area A of floe.

PLANNING:

(1) Choose the particle to be considered, and write its equation of motion
in terms of symbols for the forces acting on it.
Since the water supports both the man and the floe, let us choose the
two together as a composite particle. The forces on this particle are
the buoyant force ~Fb due to the surrounding water and air and the
gravitational force ~Fg due to the earth. Since this composite particle
is at rest, its equation of motion is

~Fb + ~Fg = 0

(2) Express each force in this equation in terms of symbols for known and
desired information.
The buoyant force is given by Archimedes’ principle, ~Fb = wdx̂, where
x̂ is a unit vector directed upward. Since the weight of the air displaced
is negligible, the weight wd of fluid displaced is just the weight of the
water displaced. Thus wd = ρwVdg. The volume of water displaced is
equal to the volume of the floe, so that Vd = AT . Thus

~Fb = ρwATgx̂

The gravitational force on this composite particle is given by ~Fg =
−(m + M)gx̂, where M is the mass of the floe. Since the floe is
homogeneous, its density ρi = M/V = M/AT , so that M = ρiAT .
Thus

~Fg = −(m+ ρiAT )gx̂
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Our equation of motion then becomes

ρwATgx̂− (m+ ρiAT )gx̂ = ~0

We know all the quantities in this equation except the desired quantity
A, so we can find the value of A.

IMPLEMENTATION:

(1) Solve the equation algebraically for the desired quantity.
Writing both sides of our equation as multiples of x̂:

[ρwATg − (m+ ρiAT )g]x̂ = 0x̂

Thus we have the algebraic equation

ρwATg − (m+ ρiAT )g = 0

Dividing both sides of this equation by g and then solving for A:

ρwAT − (m+ ρiAT ) = 0

A(ρwT − ρiT )−m = 0

A = m/(ρwT − ρiT ) = m/(ρw − ρi)T

(2) Substitute known values, and find the desired quantity.
Since ρw − ρi = (1.03− 0.93)× 103 kg/m3 = 0.10× 103 kg/m3,
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A = (80 kg)/(1.0× 102 kg/m3)(2.0× 10−1meter)

=
8.0× 101
2.0× 101 kg

(

m3

kg

)(

1

meter

)

= −4.0m2

CHECKING:

The algebra and arithmetic are correct, and the area of the floe has
the correct positive sign and a reasonable magnitude. In addition, our
equation for the required area A shows that A would be larger if the
supported man’s mass m were larger, and smaller if the thickness T of
the floe were larger; both of these results make sense.

Using an approach similar to the one illustrated in this problem, you
should be able to solve systematically other problems requiring applica-
tion of Archimedes’ principle and ~F = m~a.

Now: Go to text problem E-5.
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TUTORIAL FOR F

APPLYING RELATIONS FOR SOLIDS AND FLUIDS AT REST

The problems in this section illustrate further applications of the impor-
tant relations discussed in this unit, and offer further practice and review
for Capabilities 1, 2, and 3.

f-1 THE HIGH BLOOD PRESSURE OF THE GIRAFFE: What
would be high blood pressure for a man is normal for a giraffe, even
though both animals have the same average blood pressure in the brain.
The reason is the giraffe’s extraordinary height. To illustrate, suppose
for simplicity that the blood in both an erect man and an erect giraffe
is at rest, and that the arterial blood in the brains of both animals has
the normal average gauge pressure of 60mm-Hg = 7.8 × 103N/m2. The
man’s heart is 0.50meter below the brain, while The giraffe’s heart is
3.0meter below the brain. What is the gauge pressure (in mm-Hg) of
the blood in the heart of each animal? Take the blood of both animals
to have a density of 1.1 × 103 kg/m3. (Answer: 2) (Suggestion: Review
Text Sects. C and D. Reference: James V. Warren, “The Physiology of
the Giraffe,” Scientific American, November 1974.)

f-2 DANGER OF PRESSURIZED AIRCRAFT CABINS: Suppose
that an airplane maintains its interior or cabin air pressure at the air-
port air pressure of 1.0× 105N/m2 so that the cabin air is “pressurized.”
The airplane leaves the airport and ascends to a height of 4.0 kilometer
(about 13,000 foot) above the airport. One of the airplane’s windows is
a plexiglass square 20 cm on a side. (a) What are the magnitudes and
directions (outward or inward) of the pressure forces exerted on this win-
dow by the air inside and outside the airplane? Use the value 1.0 kg/m3

for the density of air. (b) If the window is not securely fastened to the
airplane’s fuselage, what is likely to happen? To avoid this result, cabin
air pressure is usually adjusted to a value less than the original airport
air pressure, although still larger than the exterior air pressure. (Answer:
5) (Suggestion: review Text Sec. D.)

f-3 HEIGHT OF FLUID IN A CEREBROSPINAL TAP: The cere-
brospinal fluid in the spinal and cranial cavities has a gauge pressure
of about 11mm-Hg and a density about equal to that of water. To tap
this fluid, a needle attached to a vertical tube is inserted into the spinal
cavity as shown in the following drawing. The fluid rises up the tube,
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which is open to the atmosphere at the top. (a) What is the height h of
the column of fluid in the tube when the fluid is at rest?

h

(b) In the “Queckensted test,” the veins in the neck are then compressed,
increasing the venous blood pressure in the brain. If the patient is normal,
this action also increases the pressure through the cerebrospinal fluid.
What should happen to the height of the fluid column in the tube if the
patient is normal? (Answer: 12) (Suggestion: review text section D.)

f-4 BUOYANCY CORRECTION IN WEIGHING: When we weigh a
homogeneous object of density ρ0 and volume V0, the measured weight
of the object differs from its actual weight because of the object’s buoy-
ancy due to the surrounding air of density ρa = 1kg/m

3. Although this
difference is small, it must be corrected for in making accurate weight
measurements using a chemical balance. Let us find the size of this dif-
ference (the error due to buoyancy) relative to the object’s actual weight.
(a) Express the object’s actual weight w in terms of ρ0, ρa, and V0. (b)
When the object is weighed on a scale, the scale indicates the magnitude
F of the upward force exerted on the object by the scale, so that F is the
measured weight of the object. Express the measured weight F in terms
of ρ0, ρa, and V0, assuming that the object is surrounded by air. Is the
measured weight larger or smaller than the actual weight? (c) Express
the ratio (w − F )/w in terms of ρ0, ρa, and V0. This ratio is the rela-
tive error in weighing due to buoyancy, since the difference (w − F ) is
the error. Is the relative error larger for small-density or large-density ob-
jects? (d) Find the relative error if the object is a piece of wood of density
7×102 kg/m3 and if the object is a chunk of lead of density 1×104 kg/m3.
(Answer: 9) (Suggestion: review text section E and the method outlined
in tutorial section E.)

f-5 USING AIR PRESSURE TO MEASURE ALTITUDE: The den-
sity of air has a roughly constant value of 1 kg/m3 up to a height of about
5 kilometer above the earth’s surface. Thus the atmospheric air pressure
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changes uniformly with height within this range, and a sensitive barome-
ter can be easily used as an “altimeter,” a device for measuring altitude
or height. (a) To illustrate, suppose the atmospheric air pressure at a sea-
level airport is 1.0×105N/m2. What is the air pressure at the position of
an airplane which is 1000meter (about 3300 feet) above the airport? (b)
A sensitive aircraft altimeter can detect a change in air pressure of only
20N/m2. What is the corresponding change in altitude this altimeter can
detect? (In other words, what is the vertical distance between two points
at which the air pressure differs by 20N/m2?) (Answer: 7) (Suggestion:
review text section D.)

f-6 HEIGHT OF A WATER BAROMETER: The following drawing
shows a mercury-filled barometer like the one constructed by Torricelli
in the mid 1600’s. The mercury in the dish is in contact with air at
atmospheric pressure, while the space above the mercury in the closed
tube contains air at negligible pressure (i.e., a vacuum). The height of the
mercury column in the tube (about 760mm or 0.76meter) thus indicates
the atmospheric air pressure. (a) Shortly after this barometer was made,
Pascal made a similar one containing water instead of mercury. If the
atmospheric pressure is 1.0 × 105N/m2, what is the height of the water
column in the tube of such a barometer? This is the minimum height of
the tube needed to make this barometer. (b) Suppose we wish to make
a similar barometer using an oil having a smaller density than that of
water. Will the necessary tube height be larger or smaller than your
previous answer? (Answer: 11) (Suggestion: review text section D.)

dish

mercury

tube
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TUTORIAL FOR G

PROBLEMS

The problems in this section illustrate more complex applications of the
important relations discussed in this unit.

g-1 BURSTING A BARREL WITH TWO POUNDS OF WA-

TER: The following drawing shows a barrel like the one Pascal used in
1646 to convince his contemporaries that the pressure force exerted by a
liquid at a given level can have a magnitude much larger than the weight
of the liquid above this level. The barrel’s thin tight-fitting lid, of area
A = 0.20m2, has a tall tube of negligible cross-sectional area inserted
through it. At the start of Pascal’s demonstration, water is poured into
this tube until the water surface in the barrel just reaches the bottom
surface of the barrel lid. (a) In this situation, what are the forces ~Fa

and ~Fw exerted on the barrel lid by the air above it and the water below
it? If the mass of this lid is negligible, what is the vertical force ~Fb the
barrel walls must exert on the lid to keep it stationary? (b) What are

the forces ~Fa, ~Fw, and ~Fb if 1 liter of water, having a weight of about
10N or 2 lb, is poured into the tube? This action raises the surface of
the water in the tube to a height of 10meter above the bottom of the lid.
(c) Suppose the maximum magnitude of the vertical force ~Fb the barrel
walls can exert on the lid is 2.0× 104N (about 2 ton). What will happen
when a little more water is poured into the tube? (Answer: 15)

tall tube, open at top

A

g-2 DNA SEPARATION USING DENSITY-GRADIENT ULTRA-

CENTRIFUGATION: When a concentrated solution of cesium chloride
(CsCl) is placed in the sample cell of an ultracentrifuge spinning at
60,000 revolutions per minute, the large apparent gravitational acceler-
ation ~g ′ relative to the cell causes the CsCl molecules to concentrate
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toward the outer part of the cell. The density ρs of the solution thus
increases with distance r from the axis of the centrifuge in the manner
shown by this approximate graph:

1.73

1.72

1.71

1.70

1.69

1.68 6.0 6.5 7.0r(cm)

r
s

3
3

(1
0

kg
/m
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When particles such as DNA molecules are placed in this solution, they
move under the influence of the apparent gravitational force and the buoy-
ant force due to the solution until they reach a certain distance r from
the axis at which they remain at rest relative to the cell. Particles with
different properties collect at different distances from the axis, and can
thus be separated. (For example, this result has been used to separate
ordinary DNA molecules from those grown in an environment contain-
ing heavy 15N atoms instead of ordinary 14N atoms. This technique was
crucial to experiments exploring DNA replication mechanisms.) (a) Let
us call ρm the density and V the volume of a DNA molecule in the cell.
Write an expression for the total force ~F on the molecule (relative to
the cell) in terms of ρm, V , g

′, and the density ρs of the solution at the
molecule’s position. Use a unit vector x̂ to indicate the direction along ~g ′.
(b) Using this result, find an expression for the density ρs of the solution
where the molecule remains at rest relative to the cell. (c) Ordinary DNA
molecules containing only 14N atoms have a density of 1.700×103 kg/m3,
while “heavy” DNA molecules containing only 15N atoms have a density
of 1.714 × 103 kg/m3. Using this information and the preceding graph,
find the separation between these two types of molecules when both have
come to rest relative to the cell. (Answer: 8)

g-3 USING WORK TO RELATE FORCES ON A HYDRAULIC

PRESS: We can use work instead of pressure to relate the forces ~F1 and
~F2 acting on the pistons of the hydraulic press shown in Fig.D-3. Since
the press is in macroscopic equilibrium, we know from text section G of
Unit 416 that the total work δW done on this system is zero for any
small displacement. Since internal forces do no work, the total work δW
is done only by the external forces ~F1 and ~F2. Suppose that piston 1
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moves downward by a small distance L1, so that piston 2 moves upward
by a small distance L2. (a) Express the total work δW done on the press
in terms of L1, L2, and the magnitudes F1 and F2 of the forces on the
pistons. Then use the result δW = 0 to express the ratio F1/F2 in terms
of L1 and L2. (b) Since piston 1 moved downward a distance L1, a volume
of fluid V1 = L1A1 left cylinder 1. Similarly, a volume of fluid V2 = L2A2

was added to cylinder 2. Using the fact that the volume of the fluid in the
press remained constant as the pistons moved, express the ratio L1/L2

in terms of the areas A1 and A2 of the pistons. (c) Use your results to
express the ratio F1/F2 in terms of A1 and A2. Does your result agree
with Eq. (D-4)? (Answer: 17) (Suggestion: [s-4])

g-4 SCALING OF BONE THICKNESS WITH BODY SIZE: In Gul-

liver’s Travels, Jonathan Swift pointed out that animals of similar con-
struction but different size cannot have bones of the same shape. This
problem illustrates why.

Consider two animals of similar shape (e.g., a man and a Lilliputian),
one animal being twice the size of the other. Since the larger animal is
twice as tall, twice as wide, and twice as thick as the smaller one, the
larger animal’s volume V ′ is 2 × 2 × 2 = 8 times as large as the smaller
animal’s volume V , or V ′ = 8V . (a) Let us assume that both animals have
the same average density (i.e., the animal’s mass divided by its volume).
Express the mass M ′ of the larger animal as a number times the mass M
of the smaller one. (b) Since the leg bones of each animal must support

the animal’s weight, the contact forces ~F ′ and ~F exerted at the cross-
sectional areas A′ and A of these bones must be related in the same way
as the masses of the animals. Thus F ′/F = M ′/M . Since the breakage
of bones depends on stress, however, the stress produced by these forces
should be the same for each animal. Using these observations, express
A′ as a number times A. (c) If we assume the bones of both animals
are solid and have circular cross-sections with diameters d′ and d, then
A′ = (π/4)d′2 and A = (π/4)d2. Using your previous result, express d′ as
a number times d. (d) The larger animal’s leg bone is twice as long as the
smaller animal’s leg bone. If these bones have the same shape, d′ should
be twice as large as d. Is it? If not, is the larger animal’s bone thicker or
less thick in comparison to its length than the smaller animal’s leg bone?
(Answer: 10)
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g-5 PRESSURE FORCES ON SPECIAL CURVED SURFACES: The

following drawing shows a solid hemisphere and a solid half-cylinder
which are both floating at rest in a fluid having a uniform pressure p, and
which both interact only with the fluid (e.g., this fluid might be in a tank
located in space far from everything else). (a) What is the magnitude

and the direction of the pressure force ~Ff exerted by the fluid on the flat

surface shown in gray on each object? (b) What is the pressure force ~Fc

exerted by the fluid on the curved surface of each object? These results
are excellent approximations for the pressure forces exerted by a gas near
the earth’s surface, and for the pressure forces exerted by a liquid near
the earth’s surface if the dimensions of the curved surfaces are less than
a few centimeters. (Answer: 16)

x̂

ŷR L

R

g-6 FORCE REQUIRED TO PART THE MAGDEBURG HEMI-

SPHERES: In Magdeburg in 1654, Otto von Guericke staged a dramatic
demonstration of atmospheric pressure, as illustrated in the following
drawing. He placed the rims of two hollow hemispherical shells together
and used an air pump of his invention to evacuate the air inside the
resulting sphere. Two teams of eight horses each were unable to pull
the hemispheres apart. The radius of the hemispheres was 0.30meter.
If the air pressure inside the sphere was 0.10 atmosphere, what is the
magnitude of the tension force exerted by each rope that would just
overcome the pressure force on each hemisphere and thus pull them
apart? Use your results from tutorial frame [g-5], and assume that the
interior and exterior radii of the spheres are the same. (Answer: 14)
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g-7 STRESS IN THE WALL OF A BLOOD VESSEL: Consider a

cylindrical portion of blood vessel having a length L, a radius R, and
a thin wall of thickness T , as shown in the following drawing. (The
thickness of the vessel in the drawing is greatly exaggerated for clarity.)

T R

L

Suppose the blood in this vessel has a uniform pressure pi while the fluid
in the tissues outside the vessel has a smaller uniform pressure p0. The
wall of the vessel remains at rest despite the pressure force tending to
expand it because different parts of the wall material exert forces on each
other. Let us find the stress in the wall. (a) Consider the upper and lower
pieces of the vessel shown in the figure. The upper piece exerts on the
lower one a total contact force ~F equal to the sum of the contact forces
exerted at the two areas of contact shown in gray. Express the magnitude
F of this force in terms of pi, p0, and the dimensions of the vessel, using
your result in tutorial problem [g-5]. (b) What is the magnitude σ of
the stress produced by this contact force? (c) Find the value of σ for
the aorta, using the values (pi − p0) = 100mm Hg = 1.3 × 104N/m2,
R = 1 cm, and T = 2mm. Compare this value with the tensile strength
of 106N/m2 for the elastin fibers which support most of this stress. (d)
The wall of a capillary is only 1micron = 10−6meter thick (1/2000 of
the aorta wall thickness), and yet the stress required to keep the wall in
equilibrium for a given “transmural pressure” (pi− p0) is about the same
for a capillary as it is for the aorta. Use your result to explain why the
thin wall of the capillary can support a given pressure difference as easily
as the thick wall of the aorta. (In fact, the pressure difference across a
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capillary wall is about one-fourth that across the aorta wall.) (Answer:
18)
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PRACTICE PROBLEMS

p-1 UNDERSTANDING THE DEFINITION OF STRESS

(CAP. 1B): Women wearing spike-heeled shoes used to dent (and
even punch through) the thin aluminum floors of commercial aircraft. To
see why, suppose a 50 kg woman happens to have only the spike heel of
one shoe in contact with the floor at some instant, so that the magnitude
of the downward contact force exerted by the heel on the floor is equal
to the woman’s weight. (a) If the bottom of the heel is a square having
a side of 0.50 cm, what is the stress on the floor just under the heel? (b)
For comparison, suppose instead that the woman is wearing shoes with
low heels having a bottom area 200 times that of the spike heels. In the
same situation, what is the stress on the floor under the heel? (Answer:
4) (Suggestion: review text problems A-6 and A-7.)

p-2 UNDERSTANDING THE DEFINITION OF PRESSURE

(CAP. 1C): Consider a region on the wall of an artery that is a square
3.0mm on a side. Suppose the pressure of the blood in the artery is
1.1 × 105N/m2, a typical value. (a) What is the magnitude of the pres-
sure force exerted on this small enough square region by the blood? (b)
Answer the preceding question for a square region of arterial wall that
is 1.0mm on a side. (c) Suppose that the pressure of the blood in the
artery decreases. Does the pressure force exerted by the blood on the two
small regions of the arterial wall increase, decrease, or remain the same?
(Answer: 1) (Suggestion: review text problem B-4.)

p-3 RELATING PRESSURE, PRESSURE FORCE, AND POSITION

(CAP. 2): Deep-sea divers work inside a flexible rubber suit into which
compressed air is fed from a hose leading to the surface. To keep the
suit from shriveling inward (which would make it difficult for the diver
to breathe) or ballooning outward (which would make it difficult for the
diver to move and which might even rupture the suit), the force exerted
by the air on any portion of the suit must be equal in magnitude to the
force exerted by the surrounding water on this portion. (a) If the diver is
200meter below the ocean surface, what is the magnitude of the pressure
force exerted by the water on a flat portion of the suit having an area of
1.0 in2 = 6.5 cm2? Assume that sea-water has a density of 1.0×103 kg/m3,
and use the relation 10N = 2.2 lb to express your answer in terms of the
unit lb (pound). (b) If the air inside the suit is to exert a force of equal
magnitude on this portion, what must be the air pressure in the suit?
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Express your answer in terms of lb/in2. (Answer: 3) (Suggestion: review
text problem D-7.)

p-4 RELATING PRESSURE, PRESSURE FORCE, AND POSITION

(CAP. 2): In a simple intravenous feeding arrangement, a solution of den-
sity 1.0 × 103 kg/m3 is contained in a bottle from which a tube leads
downward to a needle inserted in the patient’s arm. The air pressure
above the solution in the bottle is equal to the atmospheric air pres-
sure. The solution will barely flow into the vein if the gauge pressure
of the solution in the needle barely exceeds the gauge pressure of the
blood in the vein. Suppose the gauge pressure of the blood in the vein is
10mm-Hg = 1.3 × 103N/m2. What height must the surface of the solu-
tion be above the needle to ensure that the gauge pressure of the solution
in the needle is just equal to this venous gauge pressure? This is the min-
imum height required for intravenous feeding. (Answer: 13) (Suggestion:
review text problem D-6.)

p-5 APPLYING ARCHIMEDES’ PRINCIPLE AND ~F = M ~A

(CAP. 3): A skin diver can send an object to the ocean surface by sus-
pending it from a plastic bag which the diver inflates from his air supply.
When released, the bag and object rise to the surface because of the buoy-
ancy of the bag. To estimate the mass of an object which can be lifted to
the surface by a typical bag, find the mass of a dense object which can be
suspended at rest from an inflated bag having a volume of 400 cm3 when
both are located at a depth of 10meter. At this depth, the density of the
water is 1.0×103 kg/m3 and the density of the air in the bag is 2.4 kg/m3.
The buoyant force on the dense object and the weight of the plastic form-
ing the bag are both negligible. (Answer: 6) (Suggestion: review text
problem E-5 and the method outlined in tutorial frame [e-2].)
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SUGGESTIONS

s-1 (Text problem G-2): Note that the weight of the sample is w = ρV g,
where V is the volume of the sample. Use this relation to eliminate V from
the equation relating the forces acting on the sample when it is immersed
in water. (If you need more help, review tutorial section E.)

s-2 (Text problem A-3): The mass m of any amount of a homogeneous
substance is proportional to the volume V of this amount so that, for
example, twice the volume of the substance has twice the mass. Con-
sequently, the density of the substance, which is the ratio of these two
quantities, has the same value when measured with any amount of the
substance.

s-3 (Text problem G-1): The buoyant forces on the hydrometer in the
water and the liquid must be equal, since both are equal in magnitude
to the weight of the hydrometer. Note that the submerged volume of the
hydrometer in the liquid is (V −hA), since the quantity hA is the volume
of the stem above the liquid surface.

s-4 (Tutorial frame [g-3]): Since piston 1 moves downward a distance

L1 along the direction of the force ~F1, the work done on the press by the
force ~F1 is δW1 = +F1L1. Since piston 2 moves upward a distance L2 in
a direction opposite to that of the force ~F2, the work done on the press
by the force ~F2 is δW2 = −F2L2.

s-5 (Text problem D-6): The gauge pressures at any two points in a
fluid are related in the same way as the pressures at these points are
related. For example, the water pressure at the surface on the left side of
the manometer tube shown in Fig.D-5 is less than the water pressure at
the surface on the right side by the amount ρgh, where ρ is the density
of water. The same is true of the gauge pressures of the water at these
surfaces.

s-6 (Text problem G-3): Write each pressure force on the eardrum in
terms of the pressure of the air exerting the force and the area A of the
eardrum, using a unit vector to indicate direction (either outward from the
eardrum or inward toward it). Then find the sum of these forces. Since
the forces have opposite directions, their sum will be proportional to the
difference between the air pressures outside and inside the eardrum.
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s-7 (Text problem A-4): Part (b): An amount of homogeneous matter
having a mass m and a volume V has a density ρ = m/V . The mass m
of the substance in the container remains constant when the substance is
compressed. Therefore, the density of the substance changes appreciably
only if the volume of the substance changes appreciably. Thus the density
of an incompressible substance remains constant under compression, while
the density of a highly compressible substance increases greatly under
compression.

s-8 (Text problem E-4): Part (a): The only forces acting on the hy-
drometer are the gravitational force and the buoyant force due to the
surrounding liquid and air. If the hydrometer is at rest, the magnitudes
of these forces must be equal. Thus the buoyant force is the same in this
situation as it was in the preceding one.

Part (b): Since the weight of air displaced is negligible, the buoyant force
on the hydrometer is equal to ρVdg upward, where ρ is the urine density
and Vd is the volume of urine displaced. The buoyant force is the same,
so that the displaced volume Vd (and thus the submerged volume of the
hydrometer) must be larger in order to compensate for the smaller urine
density. The hydrometer’s bottom will thus be at a larger depth below
the urine surface.

s-9 (Text problem E-2): Part (a): Since the weight of the air displaced
by the barge is negligible in comparison to the weight of the water dis-
placed by the barge, you need only find the weight of the displaced water.

To find the volume Vd of liquid displaced by an object, it is usually helpful
to sketch the object and locate the liquid surface on the sketch. The
displaced volume Vd is then the volume of only that part of the object
that is below the liquid surface. For example, the following sketch shows
that the part of the barge below the water surface is a block-shaped region
10meter long, 5.0meter wide, and 0.20meter high. Using table E-1:

Vd = (10meter)(5.0meter)(0.20meter)
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water

surface

5.0 meter10 meter

0.20 meter

Part (b): Since the balloon is completely surrounded by air, the volume of
air displaced by the balloon is equal to the entire volume of the balloon,
and the buoyant force on the balloon is equal to the weight of this volume
of air.

s-10 (Text problem D-5): Part (a): Since the pressure in a gas varies
little between points differing in height by a few meter, the pressure of
the air in the cuff is the same as the pressure of the air above the mercury
in the reservoir. Consequently, the pressure of the mercury at its surface
in the reservoir is equal to the cuff air pressure and thus to the patient’s
systolic blood pressure, while the pressure of the mercury at its surface in
the tube is equal to the atmospheric pressure of the air above this surface.

Part (b): Since the mercury surface in the reservoir is a depth h below the
mercury surface in the tube (where h is the height of the mercury column
in the tube), the pressure of the mercury at its surface in the reservoir
must be larger than the pressure of the mercury at its surface in the tube
by an amount ρgh, where ρ is the density of mercury. Using this relation
and the pressures found in part (a), you can find the value of h.

s-11 (Text problem E-1): Part (a): In each case, the magnitude Fb of
the buoyant force equals the weight wd of fluid displaced by the object.
The weight of each kind of fluid displaced by the object is given by ρVdg,
where ρ is the density of the fluid and Vd is the volume of fluid displaced.

For example, in situation 1, the object displaces a volume of gas equal to
its own volume V0 but it displaces no liquid at all. Thus the weight of
fluid displaced is just the weight of the gas displaced, or

wd = ρgV0g

In situation 2, the object displaces a volume of gas equal to half its own
volume V0, and it displaces a volume of liquid equal to half its own volume
V0. The weight of fluid displaced is thus the sum of the weight of the gas
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displaced and the weight of the liquid displaced, or

wd = ρg

(

1

2
V0

)

g + ρl

(

1

2
V0

)

g

Since the density ρl of a liquid is typically about 1000 times the density
ρg of a gas, the weight of gas displaced is negligible in comparison with
the weight of liquid displaced. Thus the following approximate relation is
also correct:

wd ≈ ρl

(

1

2
V0

)

g

s-12 (Text problem E-5): Follow the method outlined in tutorial frame
[e-2].

Part (a): Note that only the buoyant and gravitational forces act on the
barge, and that you have already found the value of the buoyant force in
text problem E-2.

Part (b): Note that this is a different situation from that described in
part (a), because the barge now supports an amount of ore having some
mass M . Choose the barge and ore together as a composite particle of
mass m+M , where m is the mass of the barge. By expressing the forces
on the barge in terms the length L and width W of the barge, the depth
D of the barge bottom below the surface, and the density ρw of the water,
you should arrive at this equation for the mass M of the ore:

M = ρw(LWD)−m

Part (c): The equation found in part (b) applies also in this part; all
that is necessary is to rearrange this relation to express the depth D in
terms of the water density ρw so that you can see how D will change
if ρw becomes larger. Alternatively, you might want to recall how the
hydrometer behaved when it was placed in liquids of different density
(text problems E-4 and E-5).
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ANSWERS TO PROBLEMS

1. a. 0.99N

b. 0.11N

c. decrease

2. Man: 100mm-Hg, Giraffe: 310mm-Hg !

3. a. 3.1× 102 lb
b. 3.1× 102 lb/in2

4. a. 2.0× 107N/m2 downward

b. 1.0× 105N/m2 downward

5. a. Inside air: 4.0× 103N outward. Outside air: 2.4× 103N inward.
b. The window may blow out, because of the net force of 1600N
(350 lb) outward exerted on it by the air.

6. 0.40 kg

7. a. 9× 104N/m2

b. 2meter

8. a. ~F = (ρs − ρ0)V g
′x̂

b. ρs = ρ0, because ~F = ~0

c. 0.3 cm = 3mm, an easily-measurable separation.

9. a. w = ρ0V0g

b. F = (ρ0 − ρa)V0g, smaller

c. (w − F )/w = ρa/ρ0, small density objects

d. Wood: 1× 10−3 = 0.1 percent. Lead: 1× 10−4 = .01 percent.

10. a. M ′ = 8M

b. A′ = 8A

c. d′ =
√
8d = 2.8d

d. No, the larger animal’s bone is thicker in comparison to its length.

11. a. 10meter = 33 foot !

b. larger

12. a. 14 or 15 cm (either is acceptable)
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b. It should increase.

13. 0.13meter (13 cm). To obtain a satisfactory flow, the height should
be several times larger than this value.

14. 2.5× 104N (or 5500 lb!)

15. a. ~Fa = 2.0 × 104N downward, ~Fw = 2.0 × 104N upward. ~Fb =
−(~Fa + ~Fw) = ~0

b. ~Fa = 2.0 × 104N downward, ~Fw = 4.0 × 104N upward. ~Fb =
2.0× 104N downward.

c. The barrel will burst!

16. a. Hemisphere: ~Ff = πR2p x̂. Cylinder: ~Ff = 2RLp x̂.

b. Hemisphere: ~Fc = −πR2p x̂. Cylinder: ~Fc = −2RLp x̂.

17. a. δW = δW1 + δW2 = F1L1 − F2L2. F1/F2 = L2/L1.

b. L1/L2 = A2/A1

c. F1/F2 = A1/A2, yes

18. a. F = (pi − p0)2RL

b. σ = (pi − p0)R/T

c. σ = 7× 104N/m2 . It is about 15 times smaller.

d. The stress is the same because the radius of a capillary is also
about 1/2000 of the radius of the aorta.

101. a. Oxygen gas is highly compressible. The remaining liquids and solid
are nearly incompressible.

b. The liquids alcohol and molasses and the solid ice.

102. a. Cannot be found, because the drum is hollow and thus not homo-
geneous.

b. 2.5× 10−3m3

103. a. ~σ1 = 8.3× 107N/m2 upward, ~σ2 = 1.7× 108N/m2 upward

b. Yes, it is likely to break near the smaller area A2.

104. Density: same. Mass: one-tenth as large.

105. a. p = 2.0× 105N/m2 (note that p is not a vector)
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b. The direction of ~F is different (i.e., upward), the magnitude of ~F
is the same, the pressure p is the same.

106. a. 8.93× 10−2 kg/m3

b. 5 kg

107. a. A = 3× 10−7m2, r = 3× 10−4meter = 0.03 cm

b. Contact force is the same, stress is one-fourth as large.

108. a. Small shear forces are required for the oxygen gas and for the liquid
alcohol and molasses. The solid ice retains its shape.

b. Molasses is more viscous.

109. a. −(1.00− 0.02)× 105N/m2 = 0.98× 105N/m2

b. 1.0meter

c. 1.1meter

110. a. Because this relation applies only if the area A is small enough,
i.e., only if the pressure p is the same near all parts of the area.
This is not true for the side of the pool.

b. F = p3A = (1.3 × 105N/m2)(40m2) = 5.2 × 106N. Because the
pressure p is the same everywhere on the bottom of the pool, since
all points on the bottom are at the same depth.

111. a.
Stress Pressure

Kind vector number
Signs +, 0
SI unit N/m2 N/m2

b. Kind of quantity (and signs)

c. pressure

112. a. p2 − p1 = ρgh = 1.0× 104N/m2

b. p2 − p1 = 12N/m
2

c. Water: p2 = 1.1× 105N/m2. Air: p2 = 1.0× 105N/m2.

d. Liquid: No (unless the height difference is less than 0.5meter).
Gas: yes.

113. a. The pressure force on the face of the smaller can is one-forth that
on the face of the larger can.

b. Decreases.
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114. a. p∗ = 2× 105N/m2

b. p = 3× 105N/m2 = 3 atm

c. Zero.

115. a. Point 3

b. Point 2

c. Points 1 and 4

116. a. smaller than

b. −1.0× 104N/m2

c. h = 0.071meter

d. a liquid with small density

117. a. The liquid surfaces must be in contact with a gas at the same
pressure, unlike the situation in Fig.D-2.

b. The liquid must be at rest, unlike the water in a river.

118. a. Reservoir: 1.17× 105N/m2. Tube: 1.00× 105N/m2.

b. 0.12meter = 120mm

c. Gauge pressure

119. a. Top: 2.8× 102N downward. Bottom: 2.8× 102N upward.
b. Zero. Similarly, the total horizontal force exerted on the can by
the surrounding air is also zero. Thus we have been justified in
neglecting the force due to the air in writing the equation of motion
for stationary objects. The air pressure near a moving object is
not uniform, however, so that the sum of the air pressure forces on
the object can be appreciable. This total force is commonly called
the “force due to air resistance.”

c. 2.8× 102N downward.
120. a. 1.0× 105N upward.

b. 5.0× 10−2N upward

121. a. 1.0× 104N/m2

b. 76mm-Hg

122. a. 1.0× 104 kg
b. 6.5× 104 kg
c. smaller
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123. a. larger

b. ρs/ρw = V/(V − hA)

124. 1.1× 103 kg/m3

125. a. Situation 1: Fb = ρgV0g.

Situation 2: Fb = ρl(1/2V0)g + ρg(1/2V0)g ≈ ρl(1/2V0)g.

Situations 3 and 4: Fb = ρlV0g.

b. Situation 1: Fb = 1× 10−5N upward.

Situation 2: Fb = 5× 10−3N upward.

c. They are the same.

126. a. ~Fb = 50N upward, V = 5.0× 10−3m3, equal to

b. ~Fb increases, ρf decreases (because V increases). It rises.

c. ~Fb decreases, ρf increases. It sinks.

127. Equal to.

128. a. the same

b. larger

129. a. Mi = ρ1Vi

b. Vs =Mi/ρw = ρiVi/ρw

c. Vs/Vi = ρi/ρw

d. Vs/Vi = 0.90 = 90 percent

130. a. 25meter

b. 3.0 cm, or about an inch

131. 7.7× 103N (or 1700 lb!)
132. 0.5meter

133. a. F = ρghA

b. m = ρhA, w = ρghA, yes

134. a. smaller

b. larger force, yes

135. The same. Try the experiment!

136. 8× 10−10N !

137. The level falls.

138. a. ρs/ρw = w/(w − F )

b. ρs/ρw = 3, or the glass is three times as dense as water.
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MODEL EXAM

USEFUL INFORMATION

: Density of water: 1.0× 103 kg/m3

1. Buoyant force on a block of wood. A boy holds a block of wood
of density 7 × 102 kg/m3 so that it is completely submerged in the
water of a lake. The volume of the block is 80 cm3.

a. What is the buoyant force exerted on the block by the water?

The boy then releases the block so that it floats at rest on the water
with about 1/3 of its volume above the water surface.

b. Is the buoyant force on the block in this situation larger than, equal
to, or smaller than that in the previous situation?

2. Improving the water pressure in a farm house. To overcome
the poor water pressure in a farm house, a “booster tank” is installed
in the basement, as shown in this drawing: When the tank is nearly
filled by water pumped from the farm well, an air compressor is used
to pressurize the air above the water surface in the tank.

5.0 meter

booster

tank

If the air pressure in the tank is 2.0 × 105N/m2, what is the water
pressure of the stationary water in the second-floor pipes, which are
5.0meter above the water surface in the tank?

3. Stress in a nail head. The area of a circular nail head is 2×10−5m2.
When a hammer drives the nail downward into a board, the contact
force exerted on the nail by the hammer is equal to 8×103N downward.
If the hammer strikes the nail squarely, the contact force is exerted
across the entire area of the nail head.
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a. If this area of contact is small enough, what is the stress in the nail
just under this area?

If the hammer strikes the nail off-center, the area of contact is smaller
than the area of the nail head, although the contact force is the same.

b. Is the stress in the nail just under the area of contact larger than,
equal to, or smaller than that in the previous situation?

4. Pressure forces on a wall during a tornado. When a tornado
passes near the wall of a building shown in the following drawing,
the air pressure p0 just outside the wall drops suddenly to a value of
8 × 104N/m2, while the air pressure p1 just inside the wall remains
equal to the normal atmospheric pressure of 1× 105N/m2.

inside outside

wall

x̂

ŷ

If the wall is a rectangle 5meter high and 10meter wide, what are the
pressure forces ~F0 and ~Fi exerted on the wall by the air outside and
inside the wall? Indicate both the magnitudes and the directions of
these forces.

Brief Answers:

1. a. 0.8N upward

b. smaller than

2. 1.5× 105N/m2

3. a. 4× 108N/m2 downward

b. larger than

4. ~F0 = −4× 106Nx̂ or 4× 106N to left
~Fi = 5× 106Nx̂ or 5× 106N to right
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