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Abstract:

In the preceding units we discussed energy and the conservation of energy
in the simple case of a system consisting of a single particle. We shall now
generalize these ideas to systems consisting of many particles. Thus we
shall be able to apply energy arguments to many practical situations and
to deal with systems as complex as biological organisms.
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SECT.

A. KINETIC ENERGY AND WORK

Consider a system consisting of several interacting particles labeled
1, 2,. 3, .... (For example, the system might consist of the sun and
the planets.) Then the change dK of the kinetic energy of each particle
during a small enough displacement is related to the work §WW done on
this particle by all forces so that

dK, =W, dKy = 6Wo, ... (A-1)
By adding corresponding sides of these equations for all particles in the
system we obtain
dK1+dKy+...= W1 + W5 + ... (A—Q)

But since the sum of the changes on the left side is equal to the change
in their sum, we can write

d(K1+ Ko+ ...) =0W1 +Wa +... (A-3)
Let us introduce the convenient abbreviations
K=K +Ky+... (A-4)
and
OW = oWy +6Wa + ... (A-5)
Then we can write the relation (A-3) in the simple form
‘ dK = §W (by all forces) ‘ (A-6)

Note that §W is the sum of the works done by all forces acting on each
particle in the system.

The quantity K in Eq. (A-4) is called the “kinetic energy of the sys-
tem,” i.e.,

Def. | Kinetic energy of a system: The sum of the (A-7)
kinetic energies of all the particles in the system.

The quantity W in Eq. (A-5) is called the “work done on the system in
a small displacement.” Here we have used this general definition:

Work done on a system: The work done on a
system by specified forces is the sum of the works
done by these forces on all particles in the system.

Def. (A-8)
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The relation (A-6) then states that, in any small displacement of the par-
ticles, the change in the kinetic energy of the system is equal to the work
done on the system by all forces.

By Definition (A-2) of Unit 413, the “state” of a system is specified
by the positions and velocities of all the particles in the system. Consider
then a system which goes from some initial state a (specified by the initial
positions and velocities of all the particles) to some final state b (specified
by the final positions and velocities of all these particles). By applying
Eq. (A-6) to all the successive small displacements of the particles leading
from state a to state b and then adding the results, we obtain (as in text
section B of Unit 414) the result

‘ Ky — K, = Wy (by all forces) ‘ (A-9)

where K, — K, is the total change in the kinetic energy of the system and
where W, is the work done on the system by all forces during the entire
process whereby the system goes from state a to state b.

Note that the relations (A-6) and (A-9) look exactly like those for a
single particle, but their interpretation is more general since all quantities
now refer to all the particles in the system.

Example A-1: System consisting of two particles

Consider a system consisting of two balls which collide with each
other. The kinetic energy of this system is the sum of the kinetic energies
of each of the balls. The change in the kinetic energy of the system is
then equal to the work done on the system, i.e., to the sum of the works
done on each ball by the other during the collision, plus the sum of the
works done on the balls by all other forces (such as gravitational forces).

WORK DONE BY MUTUAL FORCES

Consider a system of two interacting particles 1 and 2. Then the
mutual forces F"Lg and ﬁg’l exerted on each particle by the other have
equal magnitudes but opposite directions. Suppose that both particles
are displaced by the same small amount dr; (from P; to Pj and from P,
to Py in Fig. A-1). Then the works 6W; and §Ws done on these particles
by the mutual forces must have equal magnitudes but opposite signs.
Hence the total work dW = §W; + 6W5 done on the system by these
mutual forces is zero.

Suppose now that the small displacements of the particles are differ-
ent. Then the displacement dis of particle 2 (from P to Py in Fig. A-1)
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Fig. A-1: Work done by mutual forces in
the displacement of two particles.

can be regarded as consisting of two successive displacements: a displace-
ment from P, to Pj equal to the displacement dry of particle 1, plus a
remaining displacement from Pj to Pj. But in the first of these displace-
ments, when both particles are displaced by the same amount (so that
their relative position remains unchanged), the work done on the system
of both particles is zero. Hence the work done on the system consists
merely of the work done on particle 2 during the displacement from Pj
to Py when the relative position of the particles changes.

This conclusion for two particles is equally true for any number of
particles and may be summarized:

The work done on a system of particles due to their
mutual interaction depends only on changes in the| (A-10)
relative positions of these particles.

In particular, it does not matter whether this change in relative positions
occurs while one of the particles remains fixed or not. But, as we have
seen in Unit 415, the work done on a particle by a central force due to
another fixed particle depends only on the change in distance between
these particles. Since the mutual forces between atomic particles are
central forces, Rule (A-10) implies this conclusion:

The work done on a system due to the mutual inter-
action between its atomic particles depends only on| (A-11)
changes in the distances between the particles.

For example, since the distance between any two particles in a rigid
object remains always unchanged, the work done by the mutual forces in
a rigid object is zero. *
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* In the case of a string of constant length, or in the case of an
incompressible liquid, the average distance between adjacent
atoms interacting with each other remains constant. Hence
the work done by the mutual forces between atomic particles
is then also zero.

Finding the Kinetic Energy of a System (Cap. 2a)

Figure A-2 shows four possible states of an isolated system con-

sisting of two helium atoms, each of mass m. The system has the
same momentum P = m# in each state. Write an expression (in terms
of m and v) for the system’s kinetic energies K,, K;, K., and K, in
these states. Does the system have the same kinetic energy in each state?
(Answer: 106) (Suggestion: [s-1])

Knowing About Work and Kinetic Energy for Systems

A positively-charged potassium ion (K*) and a negatively-

charged bromide ion (Br~) form an isolated system as they ap-
proach each other to form a potassium bromide (K Br) molecule (Fig. A-
3). (a) Suppose that the potassium ion, of mass 7.0 x 10~26 kg, has an
initial velocity of 800 m/s toward the right, while the bromide ion, of mass
14 x 10726 kg, has an initial velocity of 400m/s toward the left. What
is the initial kinetic energy of this system? (b) These ions then move
through the small displacements illustrated in Fig. A-3. (These displace-
ments are exaggerated for clarity.) If each ion exerts on the other an
attractive electric force of magnitude 1 x 107! N, what is the small work
dW done on the system by all forces during this motion? (¢) What is the
final kinetic energy of the system after the ions have moved through those
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displacements? (Answer: 102) (Suggestion: [s-7])

A-5
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SECT.

B POTENTIAL ENERGY

Suppose that the work done by certain forces on every particle in a
system is independent of the process (i.e., independent of its path or the
speed with which it moves). Then the work W, done by these forces on
the entire system of several such particles must also be independent of the
process whereby the system goes from any state a to another state b. In
this case the work Wy, can depend only on the initial and final positions
of all the particles in the system. An argument completely identical to
that of text section A of Unit 415 then implies that the work W,; can be
written as the difference

Wap = Uy — Up (B-1)

where the number U is called the “potential energy” of the system due
to the specified forces. The potential energy U, in a state a depends only
on the positions of the particles in this state and is defined by

Uy = Was (B-2)

This definition can be stated:

Potential energy of a system : The poten-
tial energy, due to specified forces, of a system
in a state a is the work done by these forces on
the system when it goes from the state a to some
specified standard state s.

Def. (B-3)

The standard state s of an isolated system of particles is ordinarily chosen
to be that where all particles are at rest so far apart from each other that
the interaction between them is negligible. By Eq. (B-2), Us = Wy, = 0.
Thus the potential energy of a system in its standard state is zero.

The relations (B-1) and (B-2) look again exactly the same as those
for a single particle, but their interpretation is more general since the
potential energy of a system depends on the positions of all the particles
in the system.

POTENTIAL ENERGY AND INDIVIDUAL INTERAC-
TIONS

Suppose that we want to find the potential energy of an isolated
system due to the mutual interaction between its particles. How could we

11
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find this energy from what we learned in text section D of Unit 415 about
the potential energy of a particle interacting with another fixed particle?

Consider first an isolated system consisting of only two interacting
particles 1 and 2. Then the system can be brought from some state a to
its standard state s, where the particles are far apart, by simply moving
particle 1 far away while leaving particle 2 fixed. The work done (which
is just the potential energy U of the system) is then just equal to the
potential energy Uio of particle 1 due to particle 2. Thus

U="Us (B-4)

As we have seen in Unit 415, the potential energy Ui depends only
on the distance between the interacting particles. Thus the same work is
done whether particle 1 is moved far away while particle 2 remains fixed,
or vice versa. Hence Uy = Uy and this energy can be simply called the
“potential energy of interaction between particles 1 and 2.”

Consider now a more complex system consisting of three particles 1,
2, and 3. (See Fig.B-1) Then the system can be brought from a state a
to the standard state s, where all particles are far apart, by first moving
particle 1 far from all the other particles, as shown in Fig. B-1b. The
work done in this process (where 1 is acted on jointly by forces due to
both 2 and 3) is then the sum of the works done on 1 by 2 and done on
1 by 3. Hence this work is equal to Uy2 + Uy3, where U5 is the potential
energy of 1 due to 2 (i.e., the work done on 1 in moving to its standard
position far from 2) and where U3 is the potential energy of 1 due to 3.
Now the particle 2 can be moved to its standard position far from both 3
and 1, as shown in Fig. B-1c. In this process, particle 2 is acted on only
by the force due to 3. Hence the work done on 2 is merely equal to the
potential energy Usz of 2 due to 3. Note that the system is now in its
standard state where all its particles are at rest far from each other. The
total work required to bring the system to this standard state (i.e., the
potential energy U of the entire system) is thus merely the sum of all the
works done in separating the particles, i.e.,

U=Ujs+ Uz + Uss (B—5)

12
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Fig. B-1: Work done in bringing an isolated system of three
particles from some initial state to the standard state.

The preceding conclusion can be stated in these general terms:

The potential energy of an isolated system of particles
is the sum of the potential energies between all inter- | (B-6)
acting pairs of particles.

Since the potential energy of a pair of particles depends only on the dis-
tance between them, the potential energy U of a system depends thus
only on the distances between all the interacting particles in the system.

Finding the Potential Energy of a System (Cap. 2b)

(a) What is the Coulomb potential energy of a system consisting

of two protons separated by a distance of 1.0 x 107!° meter, a
typical separation within a nucleus? Use the values 1.6 x 10719 C for the
charge of a proton, where C is the abbreviation for a coulomb of charge
and k. = 9 x 10° Nm?/C2. (b) In a beryllium nucleus, four protons are
arranged in space so that each proton is separated from the others by
the distance described in part (a). (See Fig.B-2.) What is the Coulomb
potential energy of the system consisting of these four protons? (Answer:

104) (Suggestion: [s-8])

Knowing About Work and Potential Energy for Systems

A lithium nucleus consists of three protons, each separated from

the others by the distance specified in part (a) of problem B-1.
(a) In the initial state a of a “fusion” reaction, a fourth proton is very far
from the lithium nucleus. What is the initial Coulomb potential energy
U, of the system consisting of all four protons? (b) The distant proton

13
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Fig. B-2.

then approaches the lithium nucleus, and the strong nuclear force binds
the four protons together to form a beryllium nucleus. In this final state
b, the system consisting of the four protons is arranged as described in
part (b) of problem B-1. What is the final Coulomb potential energy U,
of this system? (c) What is the work W,;, done on this system by the
Coulomb electric forces due to the protons as the system goes from the
state a to the state b? (Answer: 101)

14
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SECT.

C CONSERVATION OF ENERGY

The change in the kinetic energy of a system between any two states is
always given by Ky — K, = W, where Wy, is the work done on the system
by all forces. If the work done by all forces which do work is independent
of the process, then W, = U, — U, where U is the potential energy of
the system due to all forces. By combining these relations we then obtain
(analogously to the results obtained in text section E of Unit 415)

Ky — Ko, =Wgu=U, - Uy (C-1)
Hence it follows that
Ky + Uy = Ko + U, (C-2)
Let us then introduce this definition:
Def. Energy of a system: E =K +U (C-3)
Then Eq. (C-2) is equivalent to the statement that
E = constant (C-4)

Thus we arrive at this general principle:

Conservation of energy: If the work done on a sys-
tem by all forces which do work is independent of the (C-5)
process, the energy of the system due to these forces
remains constant.

The kinetic energy K of the system depends on the speeds of all the
particles in the system. The potential energy U of the system depends on
the distances between all the interacting particles in the system. In the
course of time, both K and U change. But the principle of conservation of
energy implies that their sum, the energy £ = K+ U, remains unchanged.

From a detailed point of view, every system consists ultimately of
atomic particles which interact by fundamental forces. Since the work
done by such fundamental forces is independent of the process, the prin-
ciple of conservation of energy, Rule (C-5), implies that, if such a system
is isolated (so that the energy of interaction between all its particles is the
energy due to all forces), the energy of the system must remain constant.

15
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Thus Rule (C-5) implies this important conclusion:

The energy of any isolated system of atomic particles (C-6)
remains constant.

The importance of the principle of conservation of energy is its great
generality. Thus the statements in Rule (C-5) and Rule (C-6) apply to
any system, even if it is as complex as an animal.

Example C-1: Gravitational interaction between two particles

Consider an isolated system consisting of two particles 1 and 2 in-
teracting by gravitational forces. (For example, consider the double-star
system “Sirius” which consists of two neighboring stars revolving around
each other, one having a mass about twice as large as the other.) Then the
kinetic energy of this system is K = K; + Ko = (1/2)m1v? + (1/2)mqv3
where v; and ve are the speeds of the particles. The potential energy
of the system is simply the gravitational potential energy of interaction
between the two particles so that U = —Gmims/R where R is the
distance between the particles. The conservation of energy then implies
that the particles always move so that

E = (K + K3) + U = constant (C-7)

Suppose that the mass ms is very much larger than the mass m; as
would be the case if particle 1 were the earth and particle 2 were the sun),
Since the acceleration of particle 2 is then negligibly small, its velocity
vy (and thus also its kinetic energy K5) remains then nearly constant.
Hence Eq. (C-7) reduces simply to the relation £ = K7 + U = constant,
previously encountered in Unit 415 where we considered a single moving
particle interacting with other fixed particles.

Finding the Energy of a System (Cap. 2c)

Two protons having the same mass m and charge ¢ collide head-

on in the earth’s upper atmosphere. During the collision, the
protons form an isolated system, and they interact by the Coulomb elec-
tric force alone. For each of the following states of this system, write an
expression for the system’s energy F due to all interactions. (a) The pro-
tons are so far apart that their interaction is negligible, and are moving
toward each other with the same speed vg. (b) The protons have a smaller

16
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separation R, and each is moving toward the other with a smaller speed
v. (¢) The protons have their smallest separation R’ and both protons
are at rest. (Answer: 108) (Suggestion: [p-1])

Understanding Energy Conservation for Isolated Systems
(Cap.1)

Ezxample: For the system described in pr[oblem C-1, suppose the

- initial speed of each proton is vg = 1 x 10> m/s. The mass of each
proton is m = 2 x 10727 kg. (a) What is the value of the initial energy E
of this system in the state described in part (a) of problem C-17 (b) What
is the value of this energy F when the system is in the states described
in parts (b) and (c¢) of problem C-1? (Answer: 103)

Applicability: An isolated helium atom forms a system consisting
- of a nucleus and two electrons. Does the principle of conservation
of energy apply to this system? Why or why not? (Answer: 110)

Meaning of E: Consider the helium atom described in problem
C-4 C-3. In this system, the nucleus has a speed v,, and a mass m,
and the two electrons (labeled 1 and 2) have speeds v1 and vy and the same
mass me. Let us call U; ,, and U, ,, the Coulomb potential energies due to
the interaction of each electron with the nucleus, and U; > the Coulomb
potential energy due to the interaction between the two electrons. Write
an expression for the conserved energy F of this system. (Answer: 105)

Dependence: (a) A carbon atom and an oxygen atom, which are

isolated from other particles, combine to form a carbon monoxide
molecule. The potential energy due to the interaction of these atoms
becomes smaller during this reaction. What happens to the kinetic energy
of the system consisting of the carbon and oxygen atoms? (This result
is typical of so-called “exothermic” reactions, such as those occurring as
fuels are burned.) (b) In a typical collision between two molecules in a
gas, the colliding molecules form an isolated system. If such a collision
is “elastic,” this system’s potential energy due to all interactions has the
same value before and after the collision. However, the kinetic energy
of each individual molecule rarely has the same value before and after
the collision. Does the kinetic energy of the system consisting of both
molecules have the same value before and after the collision? (Answer:
112)

17
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SECT.

D ENERGY TRANSFORMATIONS

According to Rule (C-6), the energy of any isolated system remains
constant if this energy is regarded as that due to all the atomic particles
in the system. But this energy consists of the sum of the kinetic energies
of all these particles and of the sum of the potential energies of interac-
tion between all these particles. These individual energies may change
although their sum (i.e., the energy of the entire isolated system) remains
unchanged. Thus the energy of an isolated system may be converted
into various forms despite the fact that its value remains unchanged. For
example, the energy of an isolated system might be transformed from po-
tential energy to kinetic energy, or vice versa. Alternatively, there might
be a transfer of energy between parts of an isolated system, so that the
energy of some particles in the system increases while the energy of other
particles in the system decreases.

Any system can always be considered as part of a larger system which
is isolated. Hence any process in nature can usefully be analyzed by
examining the energy transformations occurring in some isolated system
whose energy remains constant. As a simple example, suppose that one
wishes to accelerate a trailer on a horizontal road. Then the trailer can
be considered as part of an isolated system consisting of the trailer, the
truck connected to it, and the earth. The energy of this isolated system
remains constant. But energy can be transferred from the truck to the
trailer so as to increase the kinetic energy of the trailer and thus result in
its acceleration.

Many very important processes can be analyzed from the point of
view of energy transformations. For example, the following problem is
fundamental to the technological processes in an industrial society: What
mechanisms can be used to transform the energy contained in various sub-
stances (such as coal, oil, or uranium) into the large-scale gravitational
potential energy of lifted weights or the kinetic energy of moving vehicles
and machinery? Similarly, the following question is fundamental to all
biological processes: What chemical reactions are used to transform the
energy contained in foodstufls, or obtained from sunlight, into the poten-
tial energy of assembled polymers (such as proteins or nucleic acids) or
into the kinetic energy of moving limbs? (The energy contained in oil or
in foodstuffs is largely just the potential energy due to the electric inter-
action between the atomic particles constituting the molecules in these

18
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substances.)

The principle of conservation of energy is one of the most important
scientific principles, contributing deeply to our understanding of nature
and having many far-reaching practical implications. In particular, since
the solar system is nearly isolated, the energy in it can be transformed
but not created. Hence the energy available to us constitutes a valuable
and potentially scarce resource of crucial importance to the survival of
mankind.

The concept of energy is used extensively in all of the sciences as
well as in daily life. Various units of energy, other than the SI unit
“joule,” are used in different contexts for historical reasons. For example,
in chemistry or biology, one often encounters the unit “calorie” which is
nowadays defined by this relation:*

‘ 1 calorie = 4.184 joule ‘ (D-1)

* The Calorie (or “large” calorie), commonly used as a unit for
expressing the energy content of foods, is actually a kilocalorie
= 1000 calorie.

Example D-1: Energy transformations and efficiency

Consider a gasoline-powered crane which lifts a steel beam some
height above the ground. Then the crane with its attached gasoline mo-
tor, the beam, the earth, and the surrounding air constitute an isolated
system whose energy F must remain unchanged. *

* Although this system interacts also with the sun, no work
is done on the system by the sun. Hence the system can be
considered as isolated with respect to energy transfer to its
surroundings.

When the beam is lifted, the gravitational potential energy of every atom
in the beam increases because of gravitational interaction with the earth.
This energy is ultimately provided by the gasoline. Indeed, as the gasoline
is burned in the motor, the energy of the atoms in gasoline molecules de-
creases as these atoms recombined to form simpler molecules. Some of this
energy is transformed into the increased gravitational potential energy of
the atoms in the lifted beam. The rest of this energy is transformed into
increased energy of random motion of the atoms in the motor and in the
air (so that the motor and the air are observed to get “warmer.”)

19
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In the preceding energy-transformation process, the increase of grav-
itational potential energy of the beam is the “desired energy output.”
The energy provided by decreasing the energy of atoms in the gasoline is
the “energy input.” The “efficiency” of the energy-transformation process
can then be conveniently described by the ratio

Fici desired energy output (D-2)
efficiency = -
Y energy input

Ideally, we would want all of the energy input to be transformed into the
desired output of gravitational potential energy of the beam. Then the
efficiency of the energy-transformation process would be 1. But ordinarily
some of the energy input is unavoidably transformed into the unwanted
increase of energy of random motion of atoms in the motor and the air.
Then the desired energy output is smaller than the energy input and the
efficiency of the energy transformation process is correspondingly smaller
than 1. (The typical efficiency of the crane might be only about 0.3.)

Example D-2: Jumping heights of animals

As a simple example of a biological energy-transformation process,
consider an animal of mass M which jumps up from the ground. Then
the energy of the isolated system consisting of the animal and the
earth remains constant. When the animal is momentarily at rest at
its maximum height y above the ground, the potential energy of the
system has been increased by M gy, the gravitational potential energy of
interaction of the animal with the earth. *

* Since the gravitational potential energy of every atom of
mass m in the animal has been increased by mgy, the grav-
itational potential energy of the whole animal has been in-
creased by migy + megy + ... = (m1 +mo +...)gy = Mgy
where M is the mass of the entire animal.

This increase in potential energy is obtained from the decrease E,,
of the energy originally stored in the muscles of the animal before its
jump. Thus the energy transformation process can be summarized by
the relation Mgy = E,, so that

Em

= My (D-3)

Y

This result leads to an interesting conclusion. Suppose that we con-
sidered another animal B having a similar construction but a very dif-
ferent size than the original animal A. For example, the volume of B

20
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might be 8times as large as that of A. Then the energy F,, stored in the
muscles of B would be 8 times as large as the energy stored in the muscles
of A (since B has 8times as many muscle molecules in its larger muscle
volume). But the mass M of B would also be 8 times as large as the mass
of A. Hence the ratio E,,/M, and thus also the height y in Eq. (D-3),
would be the same for B as for A. In other words, Eq.(D-3) implies
the following (intuitively unexpected) conclusion: All animals of similar
construction, irrespective of their size, can jump to the same mazximum
height.

Experimental data are in accord with this conclusion. For example,
the observed maximum jump height of a kangaroo is about 2.7 meter,
that of a kangaroo rat about 2.4 meter, despite the fact that a kangaroo
rat (which is about the size of a rabbit) is much smaller than a kangaroo
so that its jump height is very much larger than its own size. *

* R. M. Alexander, Animal Mechanics, (University of Wash-
ington Press, Seattle, 1968), p. 29.

Knowing About Efficiency of Energy Transformations

(a) Using as energy input the energy stored in one gallon of gaso-
“= 1 line (about 1 x 108 J), a standard American car can travel 15 mile

along a level road at a constant speed of 60 mph. During this motion,
the desired energy output of the car, which is almost entirely used to
overcome air resistance, is about 1 x 107 J. What is the efficiency of this
car? (b) To lose some weight, a man decides to take up cycling. In this
exercise, the efficiency of a human is about 20 percent. What must the
man’s energy output be in order to consume 1 pound of body fat, so that
he uses its stored energy of 4.1 x 103 kilocalorie as energy input? Express
your answer in terms of joule. (c) In every hour of cycling, the man’s
energy output is 4.0 x 10° J. How many hours must he cycle to lose a
pound of fat? Would you say that exercise is an easy way to lose weight?
(Answer: 107)
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SECT.

E MACROSCOPIC AND INTERNAL ENERGY

In our preceding discussion of the principle of conservation of en-
ergy we have considered every system from a detailed atomic (or “micro-
scopic”) point of view by focusing attention on all the atomic particles
constituting this system. But we are usually quite content to describe
a system from a “macroscopic” (i.e., from a “large-scale”) point of view
which considers only the gross measurable features of the system without
being interested in atomic details. Let us then examine the connection
between such a macroscopic description and our previous detailed energy
arguments.

A “macroscopic particle” is any object (such as a golf ball or a chip of
metal) which is, from a macroscopic point of view, small enough so that
its position can be adequately described by that of a single point, but
which is large enough so that it consists of very many atoms. (For exam-
ple, a golf ball consists of about 102° atoms.) The observable large-scale
motion of such a macroscopic particle corresponds then to the collective
average motion of its atoms. In addition, the atoms also move back and
forth relative to their average positions, although this small-scale motion
averages to zero and is usually not directly observable.

A complex large-scale system (such as a spring or a bicycle) can be
considered as consisting of many macroscopic particles, (i.e., of many
small enough parts). Correspondingly, the “macroscopic energy” Epac of
the system is the energy associated with the positions and velocities of
these macroscopic particles (i.e., with the average positions and average
velocities of the atoms in them). *

* For example, the macroscopic energy of a spring consists
of the kinetic energy associated with the average velocities
of all the macroscopic particles in the spring and of the
macroscopic potential energy associated with their average
positions. (This macroscopic potential energy changes if the
spring is deformed so that the average distance between its
macroscopic particles is changed.)

In addition, there is the energy associated with the relative motion of the
very many atoms within each of the macroscopic particles in the system.
This energy is called the “internal energy” Fi,; and it can be quite large,
even if the macroscopic energy of the system is zero (e.g., even if the
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system is a coin lying at rest on the ground so that both its macroscopic
kinetic energy and gravitational potential energy are zero). Thus the
entire energy E of the system consists both of the macroscopic energy
Fmac associated with the average motion of its macroscopic particles
and of the internal energy FEj,; associated with the relative motion of the
atoms within these particles. Accordingly, we can write:

E = Enac + Eint - (E'l)

NATURE OF THE INTERNAL ENERGY

Let us look somewhat more closely at the internal energy Fing
associated with the relative positions and velocities of the individual
atoms within the macroscopic particles in the system. Part of this
internal energy is the “structural energy” FEg, associated with the
potential energy of interaction between nearby atoms at their average
positions. [For example, this structural energy, which is ultimately
due to the Coulomb potential energy between the atomic particles, is
responsible for holding atoms together in structures such as molecules or
solids (so that external work would have to be done to tear the atoms
apart).] In addition, the atoms vibrate rapidly back and forth in random
directions about their average positions. Hence the atoms have also
“random internal” energy FE.,, consisting of the kinetic energy due to the
randomly changing velocities of the atoms and of the potential energy
due to the resulting randomly changing separations between nearby
atoms. (This random energy is closely related to the observable property
called “temperature,” an increase in random energy corresponding to an
increase in temperature.) Thus the internal energy is partly structural
and partly due to random motion, so that we can write

Eint - Estr + Eran (E‘2)

The conservation of energy implies that the energy E of any iso-
lated system remains constant. But this does not imply that either the
macroscopic energy Fac or the internal energy Fi, of the system must
separately remain constant, but only that their sum must remain con-
stant.

For example, suppose that a high-speed bullet strikes a tree and
becomes embedded in it. Then the macroscopic kinetic energy of the
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bullet has been reduced to zero since the bullet has been brought to rest.
But the energy FE of the entire isolated system consisting of the bullet, the
tree, and the earth must have remained unchanged. Hence the internal
energy Fji,; of the system must have increased by an amount equal in
magnitude to the decrease in macroscopic kinetic energy of the bullet. In
other words, some of the energy of the system has been transformed from
macroscopic energy into internal energy, while leaving the energy of the
entire system constant.

What has happened in detail? As the bullet slammed into the tree,
the interaction between the atoms in the bullet with the atoms in the tree
caused the atoms in the bullet to lose their average horizontal velocity
and to increase the speeds of the atoms in the tree. As a result of the
continuing interaction between the moving atoms in the bullet and the
tree, all these atoms finally ended up with slightly larger speeds of random
motion than before. The resulting increase in the random internal energy
of the system is observable since the bullet and the wood in the tree feel
warmer (i.e., have a higher “temperature”) than before the impact of the
bullet.

Knowing About the Relation Of E.,, to Temperature

When a man lifts a hammer above his head in preparation for

hitting a nail, the contracting muscles in his arm become slightly
warmer (i.e., their temperatures increase slightly). During this process,
does the random internal energy of these muscles increase, decrease, or
remain the same? (Answer: 116)

Using a System’s Macroscopic Motion to Describe Changes In
Its Macroscopic and Internal Energies (Cap. 3)

In these and later problems, we shall refer to an isolated system So
consisting of the earth, the air, and the macroscopic objects, including
people, described in the problem. The energy £ = FEpac + Eiy of this
system is then conserved. For simplicity, we shall include in the macro-
scopic energy F,.. only the macroscopic gravitational potential energy
Umac due to the interaction of macroscopic particles with the earth.

A man pounds a nail into a board with a hammer. For each of
the following parts of this process, describe what happens to the
macroscopic kinetic energy Ki,.. the macroscopic potential energy Upac,
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Fig. E-1.

the macroscopic energy Fnac = Kmac+ Umac, and the internal energy Ejp;
of the system Sy. In other words, state whether the final values of these
energies are larger than, smaller than, or the same as their initial values.
(a) The man begins by raising the hammer from an initial position on
the nail to a final position over his head (Fig.E-1a). At the beginning
and end of this motion, every macroscopic particle in the system Sy is at
rest. (b) The man then brings the hammer forcefully down to strike the
nail, driving it into the board (Fig. E-1b). At the beginning and end of
this motion, every macroscopic particle in Sy is at rest. (Answer: 114)
(Suggestion: [s-9])

In a “demolition derby” (a race won by the driver who keeps

his car running the longest despite frequent collisions with other
cars), two cars collide head-on on the level track and come to rest, steam-
ing. Describe what happens to the macroscopic and internal energies of
the system Sy during this collision. (Answer: 109) (Suggestion: [s-5])

Suppose an object slides some distance along a horizontal sur-

face. (a) If the frictional force on the object due to the surface is
negligible, what happens to the object’s speed during this motion? What
happens to the macroscopic and internal energies of the system Sp? (b)
Answer the preceding questions if the frictional force on the object is not
negligible. (Answer: 113) (Practice: [p-2])
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SECT.

F DIRECTION OF ENERGY-TRANSFORMATION
PROCESSES

In the example of the bullet slamming into the tree, we encountered
a process where macroscopic energy is converted into random internal
energy. Let us now look at this process more closely and ask whether the
opposite process can occur, i.e., whether random internal energy can be
transformed into macroscopic energy.

Suppose that interactions between atoms (e.g., collisions between
them) make it possible to transform the macroscopic energy of an iso-
lated system into random internal energy or vice versa. What can we
then expect to happen? The macroscopic energy of the system is associ-
ated with the macroscopically observable motion of the system (e.g., with
the macroscopic motion of the bullet in our example). In such a motion
billions of atoms in the system move jointly in a very special way so that
they all have the same non-zero average velocity. But, as these atoms
interact with each other and with other atoms in the system, it is highly
unlikely that this special motion will persist indefinitely. Instead, the
continual interactions between atoms will cause them to move hither and
yon in increasingly more random directions until finally they no longer
move preferentially in any particular direction (i.e., until they finally move
in completely random directions). During this process the macroscopic
energy of the system becomes gradually converted into random internal
energy of the system. This is the process which we observed when the
bullet became embedded in the tree.

Let us now consider the opposite process where the random internal
energy of an isolated system is converted into macroscopic energy. To
produce this process, billions of atoms, which move initially hither and yon
in completely random directions, would all have to start moving together
with the same average velocity in the same direction. But it is exceedingly
unlikely that billions of atoms spontaneously start moving in such a special
way. (For example, if a bullet is initially at rest embedded in a tree, it is
exceedingly unlikely, although in principle not impossible, that the bullet
suddenly flies out of the tree with high speed because all of its atoms
start spontaneously moving in the same direction.) In other words, it
is exceedingly unlikely that the atoms in an isolated macroscopic system
start moving in such a special way that the random internal energy of the
system is converted into macroscopic energy.
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The preceding comments show that it is much more likely that the
interacting atoms in a macroscopic system cease moving in special ways
and start moving in more random ways, rather than doing the opposite.
Correspondingly, it is much more likely that the macroscopic energy of
an isolated system is transformed into random internal energy than vice
versa. Hence the processes occurring in such a system have a preferred
direction, as expressed by this conclusion:

The random internal energy of an isolated macroscopic
system tends to increase at the expense of its macro- | (F-1)
scopic energy.

As the random internal energy of an isolated macroscopic system
keeps on increasing, it ultimately reaches the maximum possible value
which it can attain. (Since the total energy of the system remains
unchanged, its macroscopic energy reaches then correspondingly its
minimum possible value. Thus its macroscopic kinetic energy is then
zero and its macroscopic potential energy is minimum.) After this the
macroscopic system no longer tends to change and is said to be in
“equilibrium” (i.e., in a situation where it does not tend to change). *

* The important conclusion in Rule (F-1) and the approach
to equilibrium will be discussed much more fully and carefully
in the last part of this book.

Note that our conclusion, Rule (F-1), does not specify how rapidly
the random internal energy of the system tends to increase, i.e., how long
it takes for the system to reach equilibrium. Depending on the nature
of the interactions between the atoms in the system, the time to reach
equilibrium might be 1078 second for one system or a century for another
system.

DISSIPATION OF MACROSCOPIC ENERGY

The process whereby the macroscopic energy of a macroscopic sys-
tem is converted into internal energy of random atomic motions within
the system is called “dissipation” of macroscopic energy. Depending on
how effectively and rapidly atomic processes bring about this energy dis-
sipation, we can distinguish between two cases, that where the dissipation
is negligible and that where it is appreciable:
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(1) The transformation of macroscopic energy into random internal
energy may proceed not at all or so slowly that it is of negligible impor-
tance during the time of interest to us. Then the dissipation of macro-
scopic energy is negligible. Hence the macroscopic energy of such a “non-
dissipative” system remains constant and its internal energy remains also
constant. (For example, when the interaction between a baseball and
the surrounding air is sufficiently small, the macroscopic energy of the
baseball remains constant.)

(2) The transformation of macroscopic energy into random internal
energy may proceed sufficiently rapidly to be significant during the time
of interest to us. Then the internal energy of such a “dissipative” sys-
tem tends to increase at the expense of its macroscopic energy. This
process continues until the system ultimately reaches its equilibrium situ-
ation where its internal energy attains its maximum possible value and its
macroscopic energy attains correspondingly its minimum possible value.

Example F-1: Object sliding along a surface

Consider a book sliding along the horizontal surface of a table. The
energy of the system consisting of the book, the table, and the earth
must then remain constant. Since the atoms near the bottom surface of
the book interact with the adjacent atoms at the surface of the table, there
is the possibility of gradually converting some of the macroscopic kinetic
energy of the book into the random internal energy of relative motion of
the atoms in the system. The rate of this conversion process depends on
the nature of the surfaces in contact. If the surfaces are very smooth,
the rate may be negligible. Then there is no dissipation of macroscopic
energy and the macroscopic energy of the sliding book remains constant.
But the gravitational potential energy of the system remains unchanged
as the book moves along the horizontal surface. Thus the macroscopic
kinetic energy of the system (i.e., of the book) must remain constant.
Hence the book continues sliding with constant speed.

On the other hand, suppose that the surfaces are rough enough so
that the conversion of macroscopic into random internal energy proceeds
at an appreciable rate. Then the random internal energy of the sys-
tem increases gradually while its macroscopic energy decreases. Hence
the macroscopic kinetic energy, and thus also the macroscopic speed, of
the book gradually decreases. (This dissipation of macroscopic energy is
the atomic explanation for the empirical “friction force” appearing in a
macroscopic description.) Ultimately the book then comes to rest, i.e., it
reaches the equilibrium situation where the internal energy of the system
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is maximum and its macroscopic energy is minimum (i.e., its macroscopic
kinetic energy is zero). (The increase in the internal energy of random
motion of the atoms in the system becomes apparent by a slight increase
in the temperature of the book and table surface.)

Example F-2: Collision between objects

Consider a ball bouncing off the floor. During a collision of the
ball with the floor, the atoms in the ball and in the floor interact and
thus provide the possibility for the conversion of macroscopic into ran-
dom internal energy. The extent of this energy conversion depends on
the nature of the colliding objects. If there is no dissipation of macro-
scopic energy, the collision is said to be “elastic.” Then the ball keeps on
bouncing indefinitely with constant macroscopic energy. (A good rubber
ball on a hard floor might approach this situation.) But ordinarily there
is appreciable dissipation of macroscopic energy (so that the collision is
“inelastic”). In this case the ball bounces up and down with decreas-
ing macroscopic energy until it finally comes to rest on the floor. The
isolated system consisting of the ball and the earth has then reached its
final equilibrium situation where its internal energy is maximum (and its
macroscopic energy is minimum).

An extreme example of an inelastic collision is that of a ball made
of putty which sticks to the floor upon impact. Then all the macroscopic
kinetic energy of the ball is immediately converted into internal energy as
a result of the first collision with the floor.

Knowing About Dissipation of Macroscopic Energy

In which of the following situations is the macroscopic energy of

the system Sy being dissipated? (The system Sy and its macro-
scopic energy are described in the problems for Sec. E.) (a) A car’s speed
decreases as it travels down a hill toward a stop sign. (b) A parachutist
and his parachute drift downward with constant speed. (c) A satellite
travels with constant speed in its circular orbit around the earth. (d)
Two boxcars roll with constant speed toward each other on a level track.
(e) The boxcars couple together and come to rest. (f) A thrown ball
moves vertically upward with negligible air friction, so that the increase
in the ball’s gravitational potential energy exactly compensates for the
decrease in its kinetic energy. (Answer: 111)
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Fig. F-1.

Describing Changes In Macroscopic and Internal Energies for
Dissipative and Non-Dissipative Systems (Cap. 4)

Consider a system Sy consisting of the earth, the air, and a pen-

dulum which swings from a frictionless pivot within an enclosure
(Fig.F-1). If the air is pumped out of the enclosure, the system Sy is
non-dissipative. Under these conditions, the pendulum bob is initially
released from rest at a position on the right side 1.0 cm above the lowest
point on its arc, as shown in Fig. F-1. (a) As the pendulum swings 100
times, what happens to the random internal energy of the system Sy7
What happens to the macroscopic energy of this system? (b) After its
hundredth swing, the pendulum bob is momentarily at rest on the right
side of the enclosure. At this time, is the final value of the system’s macro-
scopic kinetic energy larger than, smaller than, or the same as its initial
value? Is the final value of the system’s macroscopic potential energy
larger than, smaller than, or the same as its initial value? (c) Review:
Is the final height of the pendulum bob larger than, equal to, or smaller
than 1.0cm? (Answer: 118)

Answer the questions (a), (b), and (c) in problem F-2

for the situation where air fills the pendulum’s enclosure.
The system Sy is then dissipative. (d) Describe the position
and speed of the pendulum bob when this system is in its final
macroscopic equilibrium state.  (Answer: 125) (Practice: [p-3])

Because the following section discusses material having many impor-
tant applications, we recommend that you work through it.
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SECT.

G’ MACROSCOPIC EQUILIBRIUM

As a final illustration of the utility of arguments based upon work
and energy, let us consider a macroscopic system (such as a bridge or a
skeleton) which we shall consider from a completely macroscopic point of
view. Then we may ask under what conditions such a system will be in
“macroscopic equilibrium” in this sense:

Macroscopic equilibrium of a system: A situ-
ation where every macroscopic particle of the sys-
tem remains at rest. *

Def. (G-1)

* Note that a system may be in macroscopic equilibrium with-
out being in equilibrium from an atomic point of view (e.g.,
internal energy might still be transferred from some atoms to
other atoms in the system).

If the system is in macroscopic equilibrium so that each of its macro-
scopic particles remains at rest, the acceleration of each such particle, and
thus also the total force on each such particle, must be zero. Imagine then
any small displacement of the particles in the system, no matter how this
displacement is produced. (Such an imaginary displacement is commonly
called a “virtual” displacement.) Since the total force on every particle
is zero, the work done on every particle in such a displacement must also
be zero. Hence the total work W done by all forces on the entire system
must also be zero. Thus we arrive at this conclusion:

If a system is in macroscopic equilibrium, the total
work done on the system in any small displacement| (G-2)
must be zero.

(This conclusion is called the “principle of virtual work.”)

The result, Rule (G-2), provides often the simplest starting point for
discussing situations of macroscopic equilibrium because in many cases
the work done by most forces is zero. Then the work §WW done on the
system by all forces can be easily calculated and the principle in Rule (G-
2) can be readily applied. As an important application of these ideas, let
us discuss the macroscopic equilibrium of rigid objects (such as bridges
or bones).
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Fig. G-1: Small rotation of a rigid object
around the point 0. The unit vectors & and
2 indicate directions parallel and perpendic-
ular to the line OP.

MACROSCOPIC EQUILIBRIUM OF RIGID OBJECTS

If an object is rigid, the distance between all its constituent macro-
scopic particles remains always the same. Hence, as pointed out at the
end of Sec. A, the work done on a rigid object by all the mutual forces
between its particles is zero. Thus the total work done on a rigid object
in any small displacement is merely the work done on this object by the
external forces on the object due to particles outside the object.

Consider then any rigid object and suppose that an external force
F acts on a particle located at a point P in the object. (See Fig.G-1.)
To apply the principle in Rule (G-2), imagine that a small displacement
of this object is produced, as shown in Fig. G-1, by rotating the object
counterclockwise by a small angle 6 around an axis through some point
O. (The axis is perpendicular to the plane of the paper in Fig. G-1.) If
the point P is at a distance L from O, the resulting displacement of the
particle at P has then a magnitude L8 (if 6 is expressed in radians) *
and a direction perpendicular to the line OP (in the counterclockwise
direction indicated by & ).

| * From Fig. G-1, § = (magnitude of displacement) /L. |

Suppose then that the external force Fis decomposed into its compo-
nent vectors parallel and perpendicular to the line OP. Then the parallel
component vector of F does no work on the particle at P since it is per-
pendicular to the displacement of this particle. On the other hand, the
perpendicular component vector of Fis parallel to the displacement of
the particle at P and thus does on this particle the work F (L) if F|
denotes the numerical component of F along the counterclockwise direc-
tion &, perpendicular to the line OP (i.e., parallel to the displacement
of the point P).
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When several external forces ﬁl, ﬁQ, ...act on the rigid object on
particles located at points at distances Lq, Lo, ...from the point O, the
work done on the object by all these forces acting jointly is simply the
sum of the individual works done by these forces. Hence the work §W
done on the rigid object in the small rotation indicated in Fig. G-1 is

SW = Fi  L10+ Fy Lo + . .. (G-3)

But, if the object is to be in equilibrium, the principle in Rule (G-2)
states that this work should be zero. Thus W = 0 and Eq.(G-3) is
equivalent to the relation

Fi L1+ Fy Lo+ ...=0 (G—4)

For every force F , the product F'| L is called the “torque” due to this
force in accordance with this definition:

Torque: The torque exerted about an axis
through a point O by a force F applied at a point
P is the product F'; L where F'| is the numerical
component of F along a counterclockwise direc-
tion perpendicular to the line OP and where L is
the distance from O to P.

Def. (G-5)

With this definition, the condition Eq. (G-3) for the macroscopic equilib-
rium of a rigid object can be stated in words:

If a rigid object is in macroscopic equilibrium, the sum
of the torques exerted around any axis by all external | (G-6)
forces on the object must be equal to zero.

Example G-1: Force exerted by the biceps muscle

To measure the force F,, exerted by the biceps muscle, one can apply
a known horizontal force F, to a person’s wrist while asking him to keep
his forearm in the vertical position indicated in Fig. G-2. The forearm is
then in macroscopic equilibrium while acted on by the horizontal force
F,, of the muscle (attached to the forearm bone at the point P,,) and
the applied force F, (acting on the wrist at P, ). The forearm is free to
pivot at the elbow E. The distance from E to P,, is L = 5.0 cm,while
the distance from F to P, is L = 27.5cm. How then can the force ﬁm
exerted by the muscle be found from the known force F,?
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,\7 7777777 Fig. G-2: Macroscopic equilib-
E rium of the forearm.

Since the forearm is in macroscopic equilibrium, we can use the con-
dition in Rule (G-6) to relate the external forces acting on the forearm.
These external forces are the force F exerted by the muscle, the force
F applied to the wrist, the force F exerted on the forearm by the el-
bow joint, and the gravitational force F, g on the forearm due to the earth.
(This gravitational force on all particles in the forearm is equivalent to a
total gravitational force acting at the center of mass of the forearm.) To
apply Rule (G-6), we shall calculate torques around an axis through the
elbow joint E. Then the torque exerted by the force F., due to the elbow
is zero since this force acts at zero distance from E.

The torque exerted by the downward gravitational force Fy is also
zero since the numerical component of this force along a horizontal di-
rection perpendicular to the vertical forearm is zero. The torque exerted
by the force F,, due to the muscle is F;,L,, since the numerical com-
ponent of F;, along the counterclockwise direction perpendicular to the
forearm is just equal to the magnitude F,,. The torque exerted by the
force F,, applied to the wrist is —F},L,, since the numerical component
of F,, along the counterclockwise direction perpendicular to the forearm
is —F,, (because ﬁw is along a clockwise direction perpendicular to the
forearm). Thus the condition in Rule (G-6) becomes

F,L, —F,L,=0 (G-7)
Hence
L.,
F, =F,=% _
I (G-8)

Note that F},, must be much larger than F), since L,, is much smaller
than L,,.

It is found experimentally that a young man can maintain his forearm
in equilibrium against a maximum force of magnitude F,, = 375 newton
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(i.e., 84 pound) applied to his wrist. Hence Eq. (G-8) shows that the max-
imum magnitude of the force which can be supplied by the biceps muscle
is (375 newton)(27.5cm/5.0cm) = 2060 newton (i.e., about 460 pound).
This is an impressively large force.

Now: Go to tutorial section G.

APPLYING THE TORQUE CONDITION FOR MACROSCOPIC
EQUILIBRIUM

Figure G-3 shows a simple scale used throughout the world to

measure the mass M of an object (such as the fish shown). The
scale consists of a bar of negligible mass, which is free to rotate about a
supporting ring passing through the bar at a point S, and a metal block
of mass m which can be moved along the bar. The object is hung from
a hook at the point A on one end of the bar, a distance L, from the
point S, and the block is moved along the bar until the bar is horizontal
and in macroscopic equilibrium (i.e., at rest). In this situation, the block
is located at a point B, a distance Lp from the point S. The block
then exerts on the bar at the point B a downward force Fg equal in
magnitude to the block’s weight, and the object exerts on the bar at the
point A a downward force Fa equal in magnitude to the object’s weight.
(a) To relate the object’s mass M to the known mass m of the block,
apply the equilibrium torque condition with an axis passing through the
point S at which the supporting force F"S is applied to the bar. Write an
equation expressing M in terms of m and the known distances L4 and
Lg. (b) Suppose that m = 1kg and L4 = 0.1 meter. What is the object’s
mass M if Lg = (1/2)L4 = 0.05meter, if Ly = L4 = 0.1 meter, and if
Lp =2L4 = 0.2meter? (Answer: 122) (Suggestion: [s-3])

Because of the force Fy exerted on the humerus (the bone in the
- upper arm) by the deltoid muscles attached to the shoulder, a
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Fig. G-5.

man can keep his 15kg arm outstretched horizontally (see Fig. G-4). In
this situation, the shoulder joint exerts on the arm a force ﬁj, and the
earth exerts on the arm a gravitational force ﬁg applied at the arm’s center
of mass (CM). What is the magnitude F,; of the force the deltoid muscles
must exert to maintain the arm in macroscopic equilibrium? (Since the
force ﬁj is unknown, apply the equilibrium torque condition with an axis
passing through the point O at which ﬁj is applied.) (Answer: 115)

Figure G-5 shows the forces acting on the _fpot of an 80 kg man in

a crouching position. The normal force F), exerted by the floor
thus has a magnitude equal to half the man’s weight. In this situation,
what is the magnitude of the force F, exerted by the Achilles tendon
and calf muscles? (Since the force Fy exerted on the foot by the tibia is
unknown, choose an axis passing through the point O at which this force
is applied. You may neglect the gravitational force on the foot, since it
is negligible compared with the other forces on the foot.) (Answer: 120)

More practice for this Capability: [p-4], [p-5]
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SECT.

H SUMMARY

DEFINITIONS

kinetic energy of a system; Def. (A-7)

work done on a system; Def. (A-8)

potential energy of a system; Def. (B-3)

energy of a system; Def. (C-3)

macroscopic equilibrium of a system; Def. (G-1)
torque; Def. (G-5)

IMPORTANT RESULTS

Relation between energies and work for a system: Eq.(A-9), Eq. (B-1),
Eq. (B-2)

Ky — K, = Wy, (by all forces)
U, — Uy = Wy, (if work is independent of process)
Uao =Was, Us =0
Energies of a system and of its particles: Def. (A-7), Rule (B-6), Eq. (C-4)
K = K; + Ky + ... (all particles)
U =Uy2+ Uz + Usz + ... (all pairs of particles)
E=K+U
Conservation of energy: Rule (C-5)
FE = K + U = constant if U is due to all forces doing work
Macroscopic and internal parts of the energy: Eq. (E-1)
E = Enac + Eint
Direction of energy transformations: Rule (F-1)
Random internal energy tends to increase in an isolated system.
Definition of torque: Def. (G-5)
F L
Macroscopic equilibrium of a system: Rule (G-2), Rule (G-6)
OW = 0 for any displacement

For rigid object, sum of torques exerted around any axis by all exter-
nal forces is zero.
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NEW CAPABILITIES
You should have acquired the ability to:

(1) Understand the principle of conservation of energy for an isolated
system of atomic particles. (Sec.C)

(2) Use the masses, speeds, and potential energies of particles in a system
to find:
(a) the kinetic energy of the system (Sec. A),

(b) the potential energy of the system (Sec. B),
(c) the energy of the system (Sec.C, [p-1]).

(3) Use a description of the macroscopic motion of an isolated system to
describe changes in its macroscopic potential and kinetic energies, its
macroscopic energy, and its internal energy. (Sec. E, [p-2]).

(4) Describe the variation of internal and macroscopic energies of dissipa-
tive and non-dissipative isolated systems, and the final macroscopic
equilibrium state of isolated dissipative systems. (Sec.F, [p-3]).

Knowing About the Energy of Systems of Particles

Consider the system in which you live, which consists of you

and the things with which you interact, including the earth, the
air, and the food you eat. Assuming that we can regard this system
as isolated, which of the following statements about its energy are true?
(a) The energy of atomic particles in this system due to all interactions
must remain constant. (b) The macroscopic energy of this system must
remain constant. (c) The internal energy of this system must remain
constant. (d) The internal energy of this system must increase. (e) Since
this system is dissipative, its random internal energy is very unlikely to
decrease. (Answer: 124)

Describing the Energies of Systems (Cap. 3, 4)

In Unit 415, we applied the principle of conservation of energy for

single particles (e.g., macroscopic particles such as cars) interact-
ing with fixed particles (e.g., the earth). The following example illustrates
how this principle is related to the principle of conservation of energy for
isolated systems of atomic particles, as discussed in this unit. Suppose
that a car moves down a hill with its engine off and its gears in neutral,
so that the structural energy stored in the car’s fuel is not transformed
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into macroscopic energy or random internal energy. For our purposes, the
system Sy consisting of the car, the earth, and the air is isolated, and we
can regard the earth as fixed relative to an inertial reference frame. Since
the earth’s kinetic energy is thus zero, the macroscopic energy Fi,a. of
the system Sy is just the car’s energy E = 1/2mov? + mgy (i.e., the sum
of the car’s macroscopic kinetic and gravitational potential energies). (a)
Suppose that the frictional forces on the car due to the air and the road
are negligible, so that the system Sy is non-dissipative. What happens to
the random internal energy FE.,,, the internal energy Ej,¢, and the macro-
scopic energy Fp,.. of the system Sp7 Are we correct in saying, as we did
in Unit 415, that the car’s energy E is conserved? (b) Suppose that these
frictional forces are not negligible, so that the system Sy is dissipative.
What happens to the random internal energies Eian, Fing, and Fpac in
this case? Are we correct in saying, as we did in Unit 415, that the car’s
energy F is not conserved in this case? (Answer: 126)
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SECT.

PROBLEMS

I Conservation of momentum and energy in a ballistics experiment:
-1 A bullet of mass 2.0 gram is fired horizontally with an initial speed
of 500m/s toward a 1.0kg wood block at rest on a flat, smooth surface
(Fig.I-1). The total external force on the system consisting of bullet and
block is thus negligible. (a) What is the block’s speed just after the bullet
hits and becomes embedded in it? (b) If we choose a standard position
at the level of the block’s center, the macroscopic gravitational potential
energy of this system is zero during the collision. What is the system’s
macroscopic energy F... just before and just after the collision? (c)
Is Fpac conserved during the collision? If not, find the changes AFy ¢
and AFj, in the system’s macroscopic and internal energies during the
collision. (Answer: 121) (Suggestion: [s-G])

Distance of closest approach for two protons: In a scattering ex-
-2 . o i .

periment, a proton of mass m and charge g collides head-on with
another proton initially at rest in a “target.” When it is far from the
target, the incident proton has a speed v, and the two protons form an
isolated system during their collision. If the protons interact only by the
Coulomb electric force, what is the distance R between them at the time
during their collision when both protons have the same speed v/2? (This
distance R is the “distance of closest approach,” or the smallest distance
between the protons during their collision.) (Answer: 117) (Suggestion:

[s-4])

Scattering angle for colliding protons: A glancing collision of two

protons is illustrated in Fig.I-2. When the protons are far apart
before the collision, proton 1 has a velocity V and proton 2 is at rest
(Fig.I-1a). When the protons are far apart after the collision, the two

(a) (b)

— ) 9 o 9 <:>0

Fig. I-1. Fig. I-2.
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protons have velocities ¢ and ¥ (Fig.1-2b). By applying the principles
of conservation of momentum and conservation of energy to the isolated
system consisting of the two protons, show that the angle § between ¥y
and ¥s is equal to 90°. (Hint: Use conservation of momentum to draw a
vector diagram showing the triangle formed by ‘7, ¥1, and U3. Then use
conservation of energy to show that the sides of this triangle are related
by the Pythagorean Theorem.) (Answer: 123)

Force exerted at the ankle joint: The bones in a joint suffer very
.

little wear even though they exert very large forces on each other,
presumably because the region between the bones is very well lubricated.
To illustrate the magnitudes of such forces, use your results in problem
G-3 and the equation of motion to find the magnitude F; of the force
exerted by the tibia on the ankle joint in a crouching man. (Answer:
119) (Suggestion: [s-2])
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TUTORIAL FOR G

APPLYING THE TORQUE CONDITION FOR MACROSCOPIC
EQUILIBRIUM

PURPOSE: Whenever a rigid object is in macroscopic equilibrium,
we can use the torque condition for equilibrium to relate external forces
acting on the object. We shall illustrate a method for applying this re-
lation systematically by following the basic steps of the problem-solving
strategy outlined in text section D of Unit 409. In the process, we shall
briefly illustrate how to find the torque exerted on an object by a force.

A METHOD FOR APPLYING THE EQUILIBRIUM TORQUE
CONDITION: The following drawing shows a man standing on a light
stepladder. The man’s two feet exert a force FO = 200N downward at
the point O and a force F4 = 600N downward at the point A,

and we wish to find the magnitudes of the upward forces F g and 13(; ex-
erted on the stepladder by the floor at the points B and C. The remaining
external force on the stepladder, the gravitational force, is negligible.

By applying the equatlon of motion to the stepladder, we can write that
FO + FA + FB + FC = 0 since the stepladder is at rest, or in macroscopic
equilibrium. Thus FB + FC = (FO + FA) = 800N upward. To find the
magnitudes of the individual forces Fg and FC, however, we need another
relation. Let us systematically apply the torque condition for macroscopic
equilibrium in order to find this relation and the magnitudes F'g and Fe.
To apply this relation, let us choose an axis passing through the point O
at the hinge of the stepladder.
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DESCRIPTION:

Sketch: We already have one. Known: A force Fp = 200N downward
is applied at O. A force Fy = 600N downward is applied at A, a
distance L4 = 0.20meter from O. The upward force F 'z is applied
at B, a distance Ly = 0.40meter from O. The upward force fc is
applied at C, a distance Lo = 0.34 meter from O. The stepladder leg
makes an angle of 30° with the vertical, so that the forces FA and FB
make an angle of 30° with the leg. From F= mda, FB + FC = 800N
upward. Desired: magnitudes of the forces F 'z and FC

PLANNING:

(1) Choose the system and the principle to be applied.
Since the stepladder is in macroscopic equilibrium, we shall apply the
torque condition for macroscopic equilibrium to the stepladder, with
an axis chosen through the point O.

(2) Ezpress the principle in terms of symbols for known and desired infor-
mation.
We first write the torque condition in the form

Sum of torques due to external forces = 0.

Next we must find the torque exerted around an axis through the point
O by each of the external forces FO, FA, FB, and Fo. Each torque is
equal to the quantity F'| L, where L is the length of the straight line
joining the point O and the point at which the force is applied, and F';
is the component (i.e., the numerical component) of this force along
the counterclockwise direction perpendicular to this line.

Let us first find the forces which exert zero torque. Does any force
exert zero torque because the distance L = 07 If so, which one(s)?

Does any force exert zero torque because its component F; = 07 If
so, which one(s)?

(Answer: 4)
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Let us now find the torques exerted by the remaining forces F4and Fp.
On the following diagrams, construct the component vectors of Fj and
F, 'z parallel and perpendicular to the line joining the point O to the
points A and B, and indicate with a small arrow the counterclockwise
direction perpendicular to this line. Using the diagrams, express the
component F'| for each force, and the torque exerted by each force, in
terms of symbols for known and desired information.

>
/ » 0-
< /0 /
) / R A‘/
)/ FB 309/ N
/30y
. A B

F '4: Component =

Torque =

Fg: Component =

Torque =

Use your results to write the torque equation for macroscopic equilib-
rium in terms of symbols for known and desired information.

(Answer: 2)
IMPLEMENTATION:
(1) Solve algebraically for desired quantities.

Write an equation for the magnitude Fp in terms of symbols for known
quantities.

> FB:

Write an equation for the magnitude F¢ in terms of Fg and known
quantities.
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(2) Substitute known values and find the desired quantities.

> FB:

Fo =

CHECKING:

Check that the work is correct, that the results have the correct signs
and units, and that the magnitudes are not unreasonably large or small.

The method we have illustrated is useful in applying the torque condition
for macroscopic equilibrium to any problem. In particular, it should help
you solve systematically the problems in text section G.

(Answer: 6) Now: Go to text problem G-1.
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PRACTICE PROBLEMS

FINDING THE ENERGY OF A SYSTEM (CAP.2C): An
isolated hydrogen molecular ion forms a system consisting of two protons,
each of mass m, and charge e, and a single electron, of mass m. and
charge —e, as shown in the following drawing. These particles interact
only by the Coulomb electric force. The two protons are separated by
a distance R and are at rest. The electron is separated from the two
protons by distances r; and ro and has a speed v. Write an expression
for the energy E of this system due to all interactions. (Answer: 5)
(Suggestion: Review text problem C-1.)

electron

M /\Fg
O/ R \o

proton proton

USING A SYSTEM’S MOTION TO DESCRIBE ITS ENERGIES

(CAP. 3): For each of the following motions of a car along a road, describe
what happens to the macroscopic and internal energies of the system Sy
consisting of the car, the air, and the earth. (The system Sy and its
macroscopic energy are described in the problems for text section E.) The
car drives (a) with increasing speed along a level road, (b) with constant
speed along the level road, (c) with constant speed up a hill, (d) with
constant speed down the hill, and finally (e) with decreasing speed along
a level road. (Answer: 1) (Suggestion: review text problems E-2 through

E-4.)

DESCRIBING DISSIPATIVE AND NON-DISSIPATIVE SYS-

TEMS (CAP. 4): Consider a system Sy consisting of the earth, the air,
and a satellite which is initially in a circular orbit at a height h above
the earth’s surface. (a) If the initial height h is large enough, the inter-
action of the satellite with the earth’s atmosphere (i.e., the air resistance
on the satellite) is negligible, and the system Sy is non-dissipative. What
happens to the random internal energy and macroscopic energy of this sys-
tem? Suppose the satellite has its original speed v after 1000 revolutions
around the earth. At this time, are the values of the system’s macroscopic
kinetic energy and gravitational potential energy larger than, smaller
than, or the same as their original values? Is the value of the satellite’s
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height above the earth’s surface larger than, smaller than, or the same
as its original value? (b) If the initial height h is not large enough, the
satellite does interact appreciably with the atmosphere, and the system
Sp is dissipative. Answer the questions in part (a) for this case. Describe
the satellite’s motion in the final macroscopic equilibrium state of this
system. (Answer: 7) (Suggestion: review text problems F-2 and F-3.)

More Difficult Practice Problems (Text Section G)

APPLYING THE TORQUE CONDITION FOR MACROSCOPIC
EQUILIBRIUM: A painter of mass 80kg stands 3.0 meter from the left
end of a horizontal plank 4.0 meter long, which is supported at each end
by vertical ropes. The painter thus exerts on the plank a downward force
equal in magnitude to his weight, as shown in this drawing:

3.0m

We neglect the gravitational force on the plank, so that the only other
forces acting on it are the tension forces F 7, and F r exerted by the left-
hand and right-hand ropes. (a) By applying the equation of motion, write
an expression relating the magnitudes Fj, and Fr to the man’s weight.
(b) By applying the torque condition for macroscopic equilibrium with an
axis passing through either end of the plank, find one of the magnitudes
Fr or Fr. Then find the other. (Answer: 3) (Suggestion: review text
problem G-1.)

APPLYING THE TORQUE CONDITION FOR MACROSCOPIC
EQUILIBRIUM: When a man bends over, he can maintain his upper
body in equilibrium because of the force exerted by the erector spinae
muscles (literally, the muscles used to “erect” or raise the spine). The
combined action of these muscles can be described by a force ﬁe applied
to the vertebral column at a point P. This point is a distance of (2/3)L
from the sacrum (at the bottom of the spine), where L is the length of
the vertebral column. When a man of weight W bends over at an angle
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of 30° from the horizontal as shown in the following drawing, the force
exerted on the vertebral column by his upper body can be described by a
force 131, of magnitude 0.60W, which is also applied at the point P. The
remaining force on the vertebral column is the force 138 applied by the
sacrum. In this situation, what is the magnitude F, of the force applied
by the erector spinae muscles? (Since the force Fy is unknown, apply
the torque condition for macroscopic equilibrium with an axis chosen
through the point at which Fs is applied. The gravitational force on
the vertebral column can be neglected in this situation.) (Answer: 8)
(Suggestion: review text problems G-2 and G-3.)
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SUGGESTIONS

(Text problem A-1): Express the kinetic energy of each atom in
terms of the symbols provided, and then add these individual kinetic
energies to find the kinetic energy of the system.

(Text problem I-4): Express each of the known forces F, and F, in
terms of a horizontal unit vector & and a vertical unit vector ¢. Using the
equation of motion F =md =0 for the stationary foot, you can express
the force F, in terms of & and 7, and thus find its magnitude.

(Text problem G-1): Use the method outlined in tutorial frame [g-
2] as a guide. Note that all forces applied to the bar are vertical, and so
are perpendicular to the horizontal bar. Thus the component F'| of each
force along a counterclockwise direction perpendicular to the bar is equal
in magnitude to the magnitude of the force.

(Text problem I-2): Apply the principle of conservation of energy
to the system consisting of both protons, since only this system is isolated.
Write an expression for the energy of this system in the initial state where
the protons are far apart, and in the final state where they are separated
by a distance R. Since the system’s energy is conserved, these two ex-
pressions must be equal. (You may want to review text problem C-1.)

(Text problem E-3): Use your work in text problem E-2 as a guide.
First decide what happens to the macroscopic kinetic energy K,,. and
macroscopic gravitational potential energy Uy, of the system Sy. Then
decide what happens to their sum, the macroscopic energy Fiac = Kmac+
Umac- Then, using conservation of energy, decide what happens to the
internal energy Fip of the system.

(Text problem I-1): Since it is likely that macroscopic energy is
not conserved in this collision, apply the principle of conservation of
momentum to answer part (a). (You may want to review text section
F of Unit 413.) Then use your result to find the macroscopic energy
Ernac = Kimae + Umac of the system before the collision (when only the
bullet is moving) and after the collision (when the bullet and block move
together) Note that since Upae = 0, Fmac = Kmac-

(Text problem A-2): Part (b): Use the relation 6W = Fdrp to find
the small work done on each ion by the total force acting on it (i.e., by the
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attractive electric force exerted by the other ion). Since each ion moves
along this force, the component drp of the displacement of each ion is
just the distance it moves. The small work éW done on the system by
all forces is just the sum of these small works done on the two ions in the
system.

Part (c): The change dK in the system’s kinetic energy is equal to the
small work W done on the system by all forces. Thus the system’s final
kinetic energy is equal to its initial kinetic energy plus the small work §W
found in part (b).

(Text problem B-1): Part (a): To find the Coulomb potential energy
of this single pair of protons, use the result (derived in text section D of
Unit 415) that the Coulomb potential energy due to the interaction of
two particles of charge ¢; and go separated by a distance R is

Urg = Uy = ke%

Part (b): Each pair of protons in the beryllium nucleus is separated by
the same distance as the pair of protons described in part (a), and so the
Coulomb potential energy of each pair of protons is equal to the value
found in part (a). The Coulomb potential energy of the system consisting
of four protons is then the sum of this Coulomb potential energy for
each pair of protons. Thus you need only count the number of pairs
of protons in the nucleus, and multiply this number by the potential
energy found in part (a). (I find it easy to count pairs by first drawing
a diagram showing the particles as dots, and then connecting every dot
to every other one by a line. The number of lines is then the number of
pairs. For example, the following diagram shows that there are 10 pairs
of particles in a system of 5 particles.)

W

(Text problem E-2): Let us work part (a) as an example. The sys-
tem Sy we are considering consists of the man, the hammer, the nail, the
board, the earth, and the air. Since all macroscopic particles in the sys-
tem Sy are at rest when the hammer is resting on the nail and when the

MISN-0-416 Suggestions Supplement su-3
hammer is above the man’s head, the macroscopic kinetic energy Kiac
of the system is zero at both times. Thus the final value of K. is the
same as its initial value. (The kinetic energy K. increased as the man
accelerated the hammer and his arm in raising them, but it decreased
by an equal amount when he brought them to rest again.) Since every
macroscopic particle in the hammer and arm moves to a final position
higher than its initial one, the final value of the macroscopic gravitational
potential energy Upae of the system is larger than its initial value. (Since
the other macroscopic particles in the system remained fixed, their con-
tribution to Upac remained unchanged.) By combining these results, we
find that the system’s macroscopic energy Einac = Kmac + Umac has a
final value larger than its initial value.

Since the energy E = Eyyac + Eint of the system Sy must remain constant,
it follows that the final value of the system’s internal energy Ej,; must be
smaller than its initial value. This is true despite the result (from text
problem E-1) that the random internal energy of this system becomes
larger as the man raises the hammer. The reason is that the structural
internal energy Eg, of the system becomes markedly smaller as chemical
fuels are burned in contracting the man’s muscles, so that Fi,t = Eran +
FEr becomes smaller.
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ANSWERS TO PROBLEMS

Motion | Macroscopic energy | Internal energy
a becomes larger becomes smaller
b remains same remains same
¢ becomes larger becomes smaller
d becomes smaller becomes larger
e becomes smaller becomes larger
» o
A ~ 0 R < 0
/ FB /’/
bl e p
CCwW
,/ \ ' \
B ¢ B
Fa

ccw=counterclockwise

F"A: Component = F'4 sin 30°, Torque = F4 sin30°L 4.
ﬁB: Component = —Fg sin 30°, Torque = —Fpsin30°Lp.
Fysin30°Ly — Fpsin30°Lg =0, or FyLy — FgLp = 0.

a. Fr, + Fr=800N
b. Fr, =200N, Fr = 600N

. Yes, FO. Yes, ﬁc
E = (1/2)mv? — kee?/r1 — kee?/ro + kee? /R
. Fp=FsLa/Lp, Fo =800N — F, Fg = 300N, Fo = 500N

7. a. E.an and Fpac remain the same. K. and Uy, are the same.

b. FE,an becomes larger, Ey,.. becomes smaller.

Height is the same.

Kinac is the same,
Umac is smaller. Height is smaller. Satellite at rest on the earth’s
surface (or all parts of it at rest on the earth’s surface).

. F, =2.5W, two and a half times the man’s weight!
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101. a. 6.9 x 10~137J

102.

103.

104.

105.
106.

107.

108.

109.
110.

111.
112.

113.

114.

b.

1.4 x10712]

—7Tx10713]

3.3 or 3.4 x 1072 J (either is acceptable)
3x 10721

3.6 or 3.7 x 10720

2x10721]

the same as in part a.

2.3x10713]

6(2.3 x 10713 J), or 1.4 x 10712J

= (1/2)mnv}; + (1/2)mevi + (1/2)mevi + Urn + Uz + U
o = (1/2)mv?, Ky = (5/16)mv?, K. = (5/18)mv?, K4 = (1/4)mv?.

No.

a.
b.
c.

a.

0.1 or 10 percent
3.4x100)J
8.5 hours! I wouldn’t.

— 2
E = mug

b. E=mv?+k.q*/R

C.

E =k.¢®/R

Fac becomes smaller, Ej,; becomes larger

Yes, because it is an isolated system of atomic particles.

(a

b.

a.

b.

); (b), and (e)
It becomes larger.
Yes.

Speed remains the same. Ey,,. and Ej,; remain the same.

Speed becomes smaller.
larger.

Frac becomes smaller, FEj,; becomes

Kiac: same, Upae: larger, Eac: larger, Fiy: smaller

b. Kac : same, Upae: smaller, Ey..: smaller, Eiy: larger
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115.
116.

117.
118.

119.

120.
121.

122.

123.

124.
125.

126.

Answers Supplement an-3

F;=11x103N

It increases.

R = 4k.q? /mv?

a. E,n and Ep,,. both remain the same.

b. Kmac is the same, Upac is the same.

c. equal to

F,=14x10°N

F,=10x10°N

a. 1.0m/s

b. Before: Epac = 2.5 x 102J. After: Epae = 0.5J.

c. No! AE . = —250J, AE; = +250J

a. M =m(Lg/La)

b. If Lp = (1/2)La, M = (1/2)m =0.5kg. f Lp = La, M =m =
1kg. If Lg =2L 4, M =2m = 2kg.

From momentum conservation, V =@ + ¥. From energy conserva-
tion, V2 = v} + v3. Since the triangle formed by the velocities has
sides related by the Pythagorean theorem, it is a right triangle and
0 = 90°

<!

(a) and (e) are true.
a. Ep., becomes larger, E,,. becomes smaller.
b. Kmac is the same, Uy ac is smaller.

smaller than

e o

The bob hangs vertically at rest.

®

FEran, Eing, and Ep, remain the same. Yes.

b. Eian and Eyy become larger, Ep,,. becomes smaller. Yes.
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MODEL EXAM

GIVEN INFORMATION:

Potential energies due to the interaction of two particles:
Coulomb potential energy: U = keq1g2/R

Gravitational potential energy: U = —Gmimsy/R

. Motion of a diver. Consider an isolated system Sy consisting of a

swimming pool, the air, the earth, and a diver who dives from the high
diving board into the water. The diver strides out along the board,
bounces once, dives into the water, swims to the side of the pool, and
rests there. At the beginning and end of this motion, all macroscopic
particles in the system Sy can be considered to be at rest.

For the motion described, state whether the final values of the macro-
scopic and internal energies of the system Sg are larger than, smaller
than, or the same as the initial values of those energies. (Take the
macroscopic potential energy of this system to be the gravitational
potential energy due to the interaction of macroscopic particles with
the earth.)

. Energy of a positronium atom. A “positron” is an atomic particle
Yy 1% 1%

having the same mass m. as an electron but a positive charge +e equal
in magnitude to the negative charge —e of the electron. Suppose that
an electron and a positron interact by the Coulomb electric force, and
briefly form an isolated system called a “positronium atom.” In this
system, the electron and positron are separated by a distance D and
move with the same speed v in a common orbit around the system’s
center of mass.

a. Using the symbols provided, write an expression for the energy of
this system due to all interactions.

b. After a brief interval, the electron and positron in this isolated sys-
tem begin to move away from each other with decreasing speed.
Does the energy FE of this system increase, decrease, or remain con-
stant?
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Brief Answers:

1. Macroscopic energy: smaller
Internal energy: larger

2. a. E=mev? —kee?/D

b. remain constant

me-2
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