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Abstract:
Up to now we have used the theory of motion to study how the positions
and velocities of particles change with time. But in many cases we are pri-
marily interested in the relationship between the positions and velocities
of particles, irrespective of any explicit mention of time. (For example,
we might want to know what velocity a particle falling from rest attains
after traveling a distance of 20meter, but might not care about the time
when the particle reaches this velocity.) By focusing attention directly
on the relationship between the positions and velocities of particles, we
shall be led to some extremely important concepts (such as the concept of
“energy”). As usual, we shall discuss simple situations before proceeding
to more complex ones. Thus we shall devote this unit and the next to
discuss systems consisting of a single particle. We shall then use Unit 416
to extend our discussion to systems consisting of many moving particles.
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SECT.

A SMALL DISPLACEMENTS

Throughout this unit and the next we shall consider a system consist-
ing of a single moving particle which interacts with other particles fixed
relative to an inertial frame. (For example, the particle might be a ball
interacting with the earth, as illustrated in Fig.A-1a.) The equation of

motion of the moving particle is then m~a = ~F , where ~a is the acceleration
of the particle of mass m and where ~F is the total force on the particle
due to all the other particles.

To relate information about the particle’s position and velocity, let
us first use the definition of acceleration to express the equation of motion
m~a = ~F in terms of the velocity ~v of the particle. Thus we can write

m
d~v

dt
= ~F

or

md~v = ~Fdt (A-1)

Furthermore, the velocity ~v of the particle is related to its position vector
~r by the definition

~v =
d~r

dt
or

~vdt = d~r (A-2)

We should now like to eliminate the time interval dt between these two
equations in order to obtain a direct relationship between small changes
in the position ~r and velocity ~v of the particle.

ARGUMENT RELATING POSITION AND VELOCITY

To avoid the complexities of vector equations, we shall consider the
numerical components of all vectors along the direction of the total force
~F . The equality of the vectors in Eq. (A-1) implies the corresponding

equality of their numerical components along ~F . Thus

mdvF = Fdt (A-3)

where vF is the numerical component of ~v along ~F and where we have
used the fact that the numerical component of ~F along its own direction
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Fig.A-1: Motion of a particle acted on by a total force ~F .
(a) Velocity ~v of the particle at some instant, (b) Component

vectors of ~v parallel and perpendicular to ~F . [~v = vF x̂+ ~v⊥
if x̂F is a unit vector along ~F .]

is just equal to the magnitude F of ~F . Similarly, the equality of the
vectors in Eq. (A-2) implies the corresponding equality of their numerical

components along ~F . Thus

vF dt = drF (A-4)

where drF is the numerical component of the particle’s displacement d~r
along ~F . From Eq. (A-4) we conclude that dt = drF /vF . By substituting
this value into Eq. (A-3) we then find

mdvF = F
drF

vF

or

mvF dvF = FdrF (A-5)

Thus we have succeeded in eliminating the time interval dt and thereby
to obtain a direct relation connecting velocity and position.

We can write Eq. (A-5) in a more convenient form. Thus we can
express vF dvF in terms of the change in the quantity v

2

F since the rela-
tion in Relation (C-9) of Unit 404 tells us that d(v2

F ) = 2vF dvF . Hence
vF dvF = 1/2d(v

2

F ) so that Eq. (A-5) can be written as

1

2
md(v2

F ) = FdrF (A-6)

Furthermore, v2

F can be expressed directly in terms of the magnitude v
of the particle’s velocity since v2 = v2

F + v
2

⊥ where v⊥ is the magnitude of

the component vector ~v⊥ of ~v perpendicular to ~F . (See Fig. A-1b.) Hence
the relation between the corresponding changes of these quantities is

d(v2) = d(v2

F ) + d(v2

⊥) (A-7)
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But since the acceleration ~a of the particle is parallel to the force ~F , the
velocity change of the particle perpendicular to ~F is zero. *

* Indeed, Eq. (A-1) shows explicitly that the velocity change

d~v is parallel to ~F .

Thus d~v⊥ = 0 so that ~v⊥, and hence also its magnitude v⊥, remain un-
changed. Therefore d(v2

⊥) = 0 and Eq. (A-7) implies simply that

d(v2) = d(v2

F ) (A-8)

Accordingly, the left side of Eq. (A-6) is equal to

1

2
md(v2

F ) =
1

2
md(v2) = d

(

1

2
mv2

)

and Eq. (A-6) is equivalent to

d

(

1

2
mv2

)

= FdrF (A-9)

This relation forms the basis of all subsequent discussion in this and the
next two units.

DISCUSSION

As we have seen, the equation of motion, Eq. (A-1), and the defini-
tion of the velocity lead, Def. (A-2), to the important relation (A-9) which
connects directly the speed and position of the particle. Let us then intro-
duce some convenient abbreviations and terminology in order to express
this relation in more compact form.

We begin by introducing the abbreviation

K =
1

2
mv2 (A-10)

and correspondingly this definition:

Def.
Kinetic: The kinetic energy K of a particle is
K = (1/2)mv2 where m is the mass of the particle
and v is its speed.

(A-11)

Similarly, we introduce the abbreviation

δW = FdrF (A-12)

and correspondingly this definition:
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Def.

Small work: The work δW done on a particle
by any force ~F acting on the particle while it
moves through a small enough displacement d~r is
δW = FdrF where F is the magnitude of ~F and
drF is the numerical component of the particle’s
displacement along ~F . *

(A-13)

* Here we have used the symbol δ (small Greek letter delta) to
indicate explicitly that the quantity δW is small enough (so
that the ratio δW/drF = F remains constant for any smaller
value of drF ). Note that δW is ordinarily not a difference
since it is obtained by multiplying the difference drF by the
quantity F .

By using the preceding definitions, we can write the relation (A-9)
as

dK = δW (by total force) (A-14)

where δW = FdrF is the work done by the total force ~F acting on the
particle. The result Eq. (A-14) can be stated in words:

During any small displacement of a particle, the
change in the kinetic energy of the particle is equal
to the work done by the total force on the particle.

(A-15)

PROPERTIES OF KINETIC ENERGY AND WORK

According to its definition K = (1/2)mv2, the kinetic energy of a
particle depends only on its mass m and speed v. Since m and v are
numbers which are either positive or zero, the kinetic energy is thus an
ordinary number which is either positive or zero.

The work δW = FdrF done by any force ~F is also an ordinary
number (and not a vector) since the magnitude F of the force and the
numerical component drF of the displacement are numbers. The work
may be positive, zero, or negative since drF can have any sign. If ~F is
not zero, its magnitude F must be positive. Hence the sign of the work
δW = FdrF is the same as that of the numerical component drF of the
particle’s displacement d~r along the force ~F and depends thus on the
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Fig.A-2: Dependence of the work δW = FdrF on the angle
θ between the displacement d~r and the force ~F .

angle θ between d~r and ~F . If the particle moves along, or partly along,
the force ~F (as shown in Fig.A-2a), the work is positive. If the particle

moves in a direction perpendicular to the force ~F (as shown in Fig.A-2b),
the work is zero. If the particle moves opposite, or partly opposite, to the
force ~F (as shown in Fig.A-2c), the work is negative.

Irrespective of the magnitude of the force, the work δW = FdrF must
be zero whenever the displacement d~r of the particle is zero. For example,
if a man is standing at a bus stop while holding a heavy suitcase in his
hand, the work done on the suitcase by the force due to the hand is zero
since the displacement of the suitcase is zero. (On the other hand, work
is done by the forces acting on the moving atoms and electrons within the
man’s muscles since such “chemical” work must be provided to maintain
the tension in the muscles. Hence the man gets tired even if he does no
work on the suitcase.)

According to the relation dK = δW of Eq. (A-14), the work δW done

by the total force ~F on a particle is equal to the change dK in the kinetic
energy of the particle. Hence the sign of the work determines whether
the change dK in the kinetic energy is positive, negative, or zero, i.e.,
whether the kinetic energy K increases, decreases, or remains the same.
For example, Fig. A-3 illustrates the motion of a ball moving under the
sole influence of the gravitational force ~F due to the earth. During a
small displacement d~r from the point A, the force ~F does negative work
on the ball since the ball moves partly opposite to the force. Hence the
kinetic energy K of the ball (and thus also its speed v) decreases during
this displacement. But during the small displacement d~r from the point
B, the force ~F does positive work on the ball since the ball moves partly
along the force. Hence the kinetic energy K of the ball (and thus also its
speed v) increases during this displacement.
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`

parabola Fig.A-3: Work done during var-
ious small displacements along
the path of a ball moving near
the surface of the earth.

The unit of kinetic energy follows from its definition K = (1/2)mv2.
Thus

unit of K = (kg)

(

meter

sec

)2

=
kg meter2

sec2
= joule (A-16)

where the unit “joule” is merely a convenient abbreviation for
kg meter2/sec2. [The unit “joule” is named in honor of the British
physicist James P. Joule (1818-1889) who carried out fundamental
studies of various forms of energy.] Because of the relation dK = δW of
Eq. (A-14), the unit of work must be the same as the unit of kinetic energy.
Indeed, the definition δW = FdrF of work implies that the unit of work is

unit of work = newtonmeter =

(

kg
meter

sec2

)

(meter) = joule (A-

17)

since the combination of units appearing here is the same as that
appearing in Eq. (A-16).

Now: Go to tutorial section A.

Knowing About Small Work

A-1
After it is thrown, a 0.2 kg ball moves along an arched trajectory,
hits a tree branch, and then falls vertically to the ground. During

its motion, the ball moves under the sole influence of gravity through the
four small displacements, each of magnitude 0.3meter, shown in Fig. A-4.
For each of these displacements, what is the small work δW done on the
ball by the total force acting on it? (Answer: 106) (Suggestion: [s-3])

Understanding the Definition of Kinetic Energy (Cap. 1a)

A-2
Example: What is the kinetic energy K of a 1000 kg car (a) with
a velocity of 20m/s north, (b) sitting at rest at a stop sign, and

11

MISN-0-414 A-7

1

2

3

4

dr
`

dr
`

dr
`

dr
`

30°

30°

parabola

Fig.A-4.

(c) with a velocity of 20m/s east? (Answer: 103)

A-3
Properties: List the following properties of the quantities kinetic
energy and work: kind of quantity (number or vector), possible

signs of numerical quantities, single SI unit, unit expressed in terms of
kg, meter, and second. Which properties differ for the two quantities?
(Answer: 101)

A-4
Relating kinetic energy and speed: The ball described in problem
A-1 has a speed v0 = 2m/s at the beginning of the displacement

labeled (1) in Fig.A-4. (a) What is the ball’s initial kinetic energy K0 at
the beginning of this displacement? (b) The change dK = Kc − K0 in
the ball’s kinetic energy during this displacement is given by dK = δW ,
where δW = −0.3 joule is the work done on the ball by the total force
(as found in problem A-1). At the end of this displacement, what is the
ball’s final kinetic energy Kc? What is its final speed vc? (Answer: 105)

A-5
Dependence of kinetic energy on mass and speed: A little boy
sliding slowly down a playground slide has a kinetic energy of

10 joule. What is the kinetic energy of (a) the boy’s big sister, who has
twice the boy’s mass, when she slides down with the same slow speed,
and (b) the boy when he slides down with twice his original slow speed?
(Answer: 102)

12
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SECT.

B GENERAL MOTION

In the preceding section we considered only small displacements of a
particle. We shall now extend this discussion to deal with any displace-
ment of a particle.

Let us then consider a particle which moves along some path while
acted on by a total force ~F which may depend on the position as well
as on the velocity of the particle. Then the motion of the particle may
be regarded as a series of successive small displacements (as illustrated
in Fig. B-1) and the relation dK = δW of Eq. (A-14) may be applied to
each one of them. Thus we can write for the first of these displacements

(dK)1 = (δW )1 (B-1)

where (δW )1 = F1(drF )1 is the work done on the particle by the total
force during this first displacement. Similarly we can write for the second
displacement

(dK)2 = (δW )2 (B-2)

where (δW )2 = F2(drF )2 is the work done on the particle by the total
force during this second displacement. By adding corresponding sides of
these equations for all the successive displacements, we then obtain

(dK)1 + (dK)2 + . . . = (δW )1 + (δW )2 + . . . (B-3)

Here each sum is obtained by adding all successive changes of kinetic
energy, or all successive small works, starting with the particle in its
initial state a (specified by the particle’s initial position Pa and its initial

dr
`

3

dr
`

2

dr
`

1

Pb

Pa

F
`

1 F
`

2 F
`

3

Fig. B-1: Work done on a particle along
a path from a point Pa to a point Pb.
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velocity ~va) and ending with the particle in its final state b (specified by
the particle’s final position Pb and its final velocity ~vb).

On the left side of Eq. (B-3), the sum of all the successive changes
in the kinetic energy is just equal to the total change Kb − Ka in the
kinetic energy. Hence Eq. (B-3) can be written as

Kb −Ka =Wab (by total force) (B-4)

if we introduce the abbreviation

Wab = (δW )1 + (δW )2 + . . . (B-5)

to denote the sum of all the small works δW = FdrF done by the total
force ~F as the particle moves along its path from state a to state b. This
sum can be written compactly as

Wab =
∫ b

a
δW =

∫ b

a
FdrF (B-6)

where the symbol
∫

(which is a special form of the letter S) denotes
the sum (or “integral”) obtained by adding the indicated small enough
quantities, starting in state a and ending in state b. *

* The added quantities are small enough if subdivision of the
path into smaller displacements would leave the value of the
sum unaffected within the desired precision.

The preceding sum can be defined for any individual force and is called
the “work done along a path” in accordance with this definition:

Def.

Work: The work Wab done by any force ~F on a
particle, along some specified path from state a
to state b, is the sum of all the successive small
works done by this force on the particle moving
along this path.

(B-7)

The relation Kb − Ka = Wab obtained in Eq. (B-4) is the central
result of this unit. This relation asserts that the change in the kinetic
energy of a particle is always equal to the work done by the total force
on the particle along its path. Thus the change in the kinetic energy of
a particle is positive, negative, or zero (i.e., the kinetic energy increases,
decreases, or remains the same) depending on whether the work done on
the particle by the total force is positive, negative, or zero. For example,
when an object falls vertically downward, the total force on the particle is
always along the direction of motion of the particle so that the work done

14
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on the particle by this total force is positive. Hence the kinetic energy of
the particle increases.

Since the kinetic energy of a particle depends on its speed, and the
work done on the particle can be found from a knowledge of its path, the
relation Kb−Ka =Wab allows us to relate directly the speed of a particle
to information about its position. In order to do this, we must, however,
be able to find the work done on the particle. Accordingly, we shall use
much of the remaining part of this unit to illustrate how the work can be
found in various cases.

WORK DONE IN SOME SIMPLE CASES

If a force on a particle is always along, or partly along, the motion of
the particle along its path, the work done on the particle by this force in
any small displacement is positive. Hence the work done by this force
along the entire path of the particle is also positive. If a force on a
particle is always opposite, or partly opposite, to the motion of the particle
along its path, the work done on the particle by this force in any small
displacement is negative. Hence the work done by this force along the
entire path of the particle is also negative. If a force on a particle is
always perpendicular to the path of the particle, the work done on the
particle by this force in any small displacement is zero. Hence the work
done by this force along the entire path of the particle is then zero.

Example B-1: Work done by various forces on a skier

Figure B-2 illustrates a skier who is being pulled some distance up
a slope by the rope of a ski tow. Since the tension force ~Ft exerted on the
skier by the rope is along the uphill direction of motion of the skier, the
work done on the skier by this tension force is positive. Since the friction
force ~Ff exerted on the skier by the snow-covered surface of the hill is
downhill opposite to the direction of motion of the skier, the work done
on the skier by this frictional force is negative. Since the normal force ~Fn

exerted on the skier by the surface of the hill is always perpendicular to
the path of the skier, the work done on the skier by this normal force is
zero.

Finally, suppose that a particle moves along some path from a point
Pa to some point Pb and from there to some point Pc. (See Fig. B-3.)
Then the definition of work, Def. (B-7), implies that the work Wac done
by any force on the particle moving along its entire path from Pa to Pc

is simply the sum of the works Wab and Wbc done by this force as the

15
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Fig. B-2: Forces acting on a skier
being pulled up a hill.

particle moves along the successive portions of its path. In other words,

Wac =Wab +Wbc . (B-8)

Knowing About the Definitions of Work and State

B-1
A woman pushes a baby carriage through a park along the path
shown in Fig. B-4, traveling 50meter from the point A to the point

B, 100meter around a fountain to the point B again, and then 50meter
back to the point A. Let us divide the carriage’s motion into a series
of small displacements, each of magnitude 1meter. During each small
displacement d~r, the woman exerts on the carriage a force ~Fw having a
constant magnitude of 10N and a direction along the displacement. (a)

What is the small work δW done on the carriage by ~Fw in each small
displacement? (b) Using this result, find the work done on the carriage

by ~Fw along the parts of the path from A to B, from B around the
fountain to B again, and from B to A. (c) What is the work done on the

carriage by ~Fw along the entire path through the park? (Answer: 104)
(Suggestion: [s-11])

Pc

Pb

Pa

Fig. B-3: Work done on a particle along suc-
cessive portions of a path.
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A
BB

Fig. B-4.

B-2
The baby carriage described in problem B-1 has the same speed,
mass, and position when it leaves the park as when it entered it.

Is the state of the carriage the same at these two times? Why or why
not? (Answer: 112)

Finding the Sign of Work Done by Special Forces (Cap. 2)

B-3
What is the sign (+, 0,−) of the work done (a) by the sun’s
gravitational force ~Fg on a comet traveling directly away from

the sun, (b) by the sun’s gravitational force ~Fg on a planet traveling

along its circular orbit around the sun, (c) by the frictional force ~Ff on
a cereal box sliding along a grocery check-out counter, and (d) by the

electric force ~Fe on an electron moving along the direction of ~Fe in the
“electron gun” of an oscilloscope? (Answer: 109) ([s-9], [p-1])

Understanding the Relation Wab = Kb −Ka (Cap. b)

B-4
Example: A baseball has a kinetic energy Ka = 90 joule just
after it is hit by a bat, and a kinetic energy Kb = 45 joule when it

reaches the top of its trajectory. What is the work Wab done by the total
force on the baseball as it moves from the bat to the top of its trajectory?
(Answer: 107)

B-5
Meaning of Wab: For each of the following particles, either find
the particle’s final kinetic energy, or explain why this, cannot be

done. (a) An elevator, initially at rest with zero kinetic energy, is hoisted
upward by its cable. What is the kinetic energy of the elevator as it passes
the next higher floor? During this ascent, the work done on the elevator
by the cable force is 104 joule. (b) When a coin is flipped into the air,
it moves up and down with negligible air resistance until it is caught at

17
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its initial position. During this motion, the work done on the coin by the
gravitational force is zero. If the coin’s initial kinetic energy is 0.05 joule,
what is its final kinetic energy just before it is caught? (Answer: 115)

B-6
Dependence of kinetic energy on work done by the total force: In
each of the examples of problem B-3, the force described is the

total force on the particle. For each example, use your results for the sign
of the work done by this total force to state whether the particle’s final
kinetic energy is larger than, equal to, or smaller than its original kinetic
energy, and thus whether the particle’s kinetic energy and speed increase,
decrease, or remain constant during its motion. (Answer: 111)

Relating Work and Speed (Cap. 3)

B-7
A 2000 kg truck hits a highway safety barrier with a speed of
30m/s and comes to rest. What is the work done on the truck by

the total force during this collision? (Answer: 108) (Suggestion: [s-4])

B-8
Using a computer to calculate the sum of small works, an astro-
nautics expert finds that the work done by the total force on a

100 kg space probe as it travels along a path from the earth’s orbit to
Mercury’s orbit is 1× 109 joule. If the probe’s speed at the earth’s orbit
is 9× 103m/s, what is its speed when it reaches Mercury’s orbit? (These
speeds are measured relative to the inertial solar frame.) (Answer: 114)
(Suggestion: [s-2])

B-9
The speed of a red blood cell in the aorta is about 50 cm/s, and
the speed of the same cell in a capillary in the hand is about

0.1 cm/s. What is the sign of the work done by the total force on this cell
as it travels from the aorta to the capillary? (Answer: 110)

(Practice: [p-2])

18
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SECT.

C WORK DONE BY A CONSTANT FORCE

Suppose that a force ~F on a particle is constant (in both magnitude
and direction) as the particle moves along its path. Then the work FdrF

done on the particle in every small displacement d~r of the particle depends
only on the numerical component of this displacement along the fixed
direction of the force ~F (a direction indicated by the unit vector x̂F in
Fig. C-1). Thus the work done on the particle is completely independent
of how the particle moves perpendicularly to the fixed direction of the
force.

What then is the work W done on the particle by the constant force
~F along the path from a point Pa to another point Pb? This work is the
sum of the works done in all the successive small displacements of the
particle along this path, i.e.,

W = F (drF )1 + F (drF )2 + . . . = F [(drF )1 + (drF )2 + . . .]

since the constant force has the same magnitude F in all displacements.
Hence

if ~F is constant, W = FDF (C-1)

where DF = (drF )1+ (drF )2+ . . ., the sum of the numerical components

along ~F of all the successive displacements of the particle, is simply equal
to the numerical component DF along ~F of the entire displacement ~D of
the particle (See Fig. C-1b). Note that the value of the component of a
displacement will be positive if the component is in the same direction as
~F , negative if in the opposite direction. Thus DF can be either positive
or negative (or zero).

Suppose now that the force ~F on a particle is constant throughout
an entire region of space so that it has the same value along any path
traversed by the particle in this region. (For example, ~F might be the

gravitational force near the surface of the earth.) Since ~F has then every-
where the same value, the work FDF done on the particle by this force
has the same value along all paths for which the numerical component
DF of the displacement along the force has the same value. For exam-
ple, the work done on a particle by the vertical gravitational force near
the earth has the same value along all paths whose end points are sepa-
rated by the same difference in vertical height. (Thus the work done by
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dr
`

Pb

Pa(a) (b)

x̂F

F
`

F
`

D
`

D x̂F F

dr x̂F F

Fig. C-1: Work done by a constant force. (a) Work done in
a small displacement. (b) Work done along an entire path.

the gravitational force is the same along all the different paths shown in
Fig. C-2.)

Example C-1: Work along a path parallel to a constant force

The gravitational force on a brick of mass m = 2kg is mg =
(2 kg)(10meter/sec2) downward = 20 newton downward. If the brick falls
vertically downward through a distance of 3meter, the numerical compo-
nent of the displacement along the gravitational force is DF = 3meter.
Hence the work done on the brick by the gravitational force is FDF =
(20 newton)(3meter) = 60 joule. On the other hand, if the brick is thrown
so that it moves vertically upward through a distance of 3meter, the nu-
merical component of the displacement of the brick along the gravitational
force is DF = −3meter since the upward displacement is opposite to the
downward gravitational force. Hence the work done on the brick by the
gravitational force is then FDF = (20 newton)(−3meter) = −60 joule.

F
`

D x̂F F

1

1

2

3
4

5

Fig. C-2: Different paths between the same two heights near
the surface of the earth. The work done by the constant
gravitational force is the same along each of these paths.
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Pa

Pb

P
`

h
v
`

a

v
`

b

parabola
Fig. C-3: Motion of a ball near the
earth.

Example C-2: Relation between speed and height of a ball

A ball is thrown from the ground with a speed of 15meter/sec. If
the ball moves under the sole influence of gravity, what is the speed of
the ball when it is at the highest point of its trajectory 6meter above the
level ground?

Description: Fig. C-3 illustrates the situation where the ball of mass
m starts from the point Pa with a speed va = 15meter/sec. We should
like to find the speed vb when the ball is at its highest point Pb at a height
h = 6meter above the initial point Pa.

Planning: To relate the speed directly to the height, we can use the
relation between kinetic energy and work

Kb −Ka =Wab (C-2)

To calculate the work, we note that the total force ~F on the ball is
the constant gravitational force of magnitude F = mg. The numerical
component of the displacement of the ball along the vertically downward
direction of the gravitational force is DF = −h. (Here DF is negative
because the component vector of the ball’s displacement from Pa to Pb

is in the upward direction opposite to the gravitational force.) Thus

Wab = FDF = (mg)(−h) = −mgh (C-3)

Hence Eq. (C-2) becomes

1

2
mv2

b −
1

2
mv2

a = −mgh (C-4)

or

v2

b − v2
a = −2gh (C-5)

This relation allows us to find vb from the known information about va

and h.

Implementation: From Eq. (C-5) we find
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v2

b = v2
a − 2gh (C-6)

Substituting the known values, we get

v2

b = (15m/s)
2 − 2(10m/s2)(6m) = (225− 120)(m/s)2 = 105(m/s)2

Hence

vb = 10.2m/s

i.e., the speed of the ball at its highest point is 10.2meter/sec.

Checking: As anticipated, the speed of the ball at its highest point
is smaller than its initial speed at ground level. Furthermore, the result
Eq. (C-6) does not involve the mass m of the ball, as expected in the case
of motion under the sole influence of gravity.

Understanding the Relation W = FDf (Cap. 1c)

C-1
Example: A 1000 kg elevator moves through a displacement of 15
meter upward, and then a displacement of 15meter downward,

returning to its original position. (a) For each of these displacements,
and for the displacement corresponding to the elevator’s entire trip up
and down, find the numerical component DF of the displacement along
the gravitational force ~Fg on the elevator, and the work W done on the

elevator by ~Fg. (b) Is the work done by ~Fg during the entire trip equal
to the sum of the works done in the upward and downward parts of the
trip? (Answer: 118) (Suggestion: [s-5])

C-2
Interpretation: (a) What is the work done by the gravitational
force on the 1200 kg car shown in Fig. C-4a as the car travels

a distance of 20meter up the indicated slope? (b) Fig. C-4b shows the
path of an electron traveling between two charged deflecting plates in an
oscilloscope tube. As the electron travels from the point A to the point B,
the total force acting on it is the constant electric force ~Fe = 1× 10−14N
upward due to the charged plates. What is the work done by the total
force on the electron as it travels from A to B? (c) A 60 kg hiker walks
from a ranger station over a mountain pass to a lake. If the elevation
of the lake is 1000meter higher than that of the ranger station, what is
the work done by the gravitational force on the hiker during the journey?
(Answer: 116) (Suggestion: [s-16])

C-3
Comparison of work done by different forces: To push a broom
a distance of 5.0meter in a straight line across a level floor, a

man exerts on the broom a force ~Fm having a constant magnitude of 20N
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(a) (b) 1.5 cm

0.1 cm

F
`

e

A

B

6°

Fig. C-4.

60°

F
`

m

Fig. C-5.

and a direction along the broom handle (Fig. C-5). During this motion,

three other constant forces act on the broom: the gravitational force ~Fg of

magnitude 20N, and the frictional force ~Ff of magnitude 10N and normal

force ~Fn of magnitude 37N due to the floor. What is the work done on
the broom by each of these forces during the broom’s motion? (Answer:
113) (Suggestion: [s-8])

C-4
Applicability: Suppose the man described in problem C-3 now
pushes the broom in the same way once around a circle on the

level floor. All the forces on the broom have the same constant magnitudes
as before. For which of these forces can you not use the relationW = FDF

to find the work done on the broom, and why? (Answer: 120)

C-5
Dependence of work on the direction of the displacement: Figure
C-6 shows six paths a bird might take from its original position on

a roof. (a) For each path, describe the direction of the bird’s displacement

relative to the gravitational force ~FG on the bird. (Use the terms “along,”
“partly along,” “perpendicular,” “partly opposite to,” and “opposite to.”)

Then give the sign of the work done by ~Fg on the bird as it moves along

each path. (b) For which pairs of paths is the work done by ~Fg the same?
(Answer: 117) (Suggestion: [s-15])

1

2

3

4
5

6

Fig. C-6.
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Relating Work and Speed (Cap. 3)

C-6
A truck driver of mass M jumps off the back of his truck with
an initial speed va. He moves with negligible air resistance, and

lands on the level pavement, a vertical distance h below, at a horizontal
distance L from the back of the truck. (a) Find the work Wab done
on the driver by the total force during this jump, and the driver’s final
speed vb just before hitting the pavement. Using the values M = 80 kg
and h = 0.8meter, find the driver’s final speed if he (b) simply drops
vertically with an initial speed of zero, and (c) runs off the truck bed with
an initial speed of 3m/s, so that he lands a horizontal distance of 1meter
from the back of the truck. (Answer: 124) (Suggestion: [s-13])

C-7
The electron described in part (b) of problem C-2 has a speed
of 1 × 107m/s when it passes the point B. What was its speed

when it passed the point A? (Use your previous result for the work done
on the electron, and the value 1× 10−30 kg for the mass of the electron.)
(Answer: 121)

(Practice: [p-3])
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SECT.

D SUPERPOSITION PRINCIPLE FOR WORK

The work done on a particle by a force ~F is equal to FDF for any
displacement ~D of the particle if the force on the particle is constant along
its path. In particular, the relationW = FDF holds for any displacement
~D = d~r which is small enough (so that ~F remains constant within this
displacement).

In practice, the workW can be calculated in various equivalent ways.
For example, the numerical component DF of the displacement ~D along
the force ~F can be found from the magnitude D of the displacement and
the angle θ between the displacement and the force. Indeed, from Fig.D-
1a we see that DF = D cos θ. Hence the work W is equal to

W = FDF = FD cos θ (D-1)

But from Fig.D-1b we also see that F cos θ = FD, the numerical compo-
nent of the force ~F along the displacement ~D. Hence the work in Eq. (D-1)
is also equal to

W = D(F cos θ) = DFD (D-2)

Hence the work can be found either from Eq. (D-1) by multiplying the
magnitude of the force by the numerical component of the particle’s dis-
placement along this force, or from Eq. (D-2) by multiplying the magni-
tude of the particle’s displacement by the numerical component of the
force along this displacement.

Suppose that a particle is acted on by several forces, e.g., by a force
~F1 due to its interaction with one object and by a force ~F2 due to its
interaction with a second object. Then we know from the superposition
principle that the total force ~F on the particle due to its interaction with
all the other objects is

~F = ~F1 + ~F2 (D-3)

F
`

F
`

(a) (b)
D
` D

`

l lDF

l
l

F D

q q Fig.D-1: Displacement ~D
of a particle acted on by a
force ~F .
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How then is the work done on the particle by this total force ~F related to
the works done by the individual forces ~F1 and ~F2?

According to Eq. (D-2), the work done by the total force ~F in any

small displacement ~D of the particle is equal to DFD. But the numerical
component FD of the total force along D is just equal to the sum of the
numerical components of the individual forces along ~D. *

* We recall from statement (D-2) of Unit 407 that the numer-
ical component of the sum of vectors is just equal to the sum
of their numerical components.

In other words FD = F1D + F2D. Hence DFD = DF1D +DF2D so that
the work done by the total force in any small displacement ~D is the sum of
the works done by the individual forces. Since this relationship is true for
every small displacement, it must also be true for the works done by these
forces along any entire path. Thus the superposition principle Eq. (D-3)
for forces implies correspondingly this conclusion:

Superposition principle for work: The work done by
several forces acting jointly is equal to the sum of the
works done by the individual forces separately.

(D-4)

Thus the work W done by the total force is related to the works W1 and
W2 done by the individual forces so that

W =W1 +W2 (D-5)

The conclusion in Rule (D-4) is extremely useful and can greatly
simplify the calculation of work. Thus the work done by several forces
acting jointly can be found without ever calculating the total force, i.e.,
without ever needing to calculate a cumbersome vector sum of individual
forces. Instead, we need merely calculate the sum of the works done by
the individual forces. Since these works are ordinary numbers, we need
thus merely calculate a simple numerical sum without ever having to add
any vectors.

Example D-1: Work done on a skier descending a hill

A skier of mass m descends along an icy frictionless hill. What is the
total work done by all forces on the skier after he has descended through
a vertical height h?
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F
`

= mgg

F
`

n

h

Fig.D-2: Skier descending along
the frictionless surface of a hill.

As illustrated in Fig.D-2, the skier is acted on by the downward
gravitational force ~Fg due to the earth and by the normal force ~Fn due
to the surface. The total work done by these forces acting jointly (i.e.,
by the total force) is then, by Rule (D-4), simply the sum of the works
done by these individual forces separately. But since the normal force
~Fn is always perpendicular to the path of the skier, the work done by
this force is zero. Hence the total work consists merely of the work done
by the constant gravitational force m~g, i.e., it is equal to mgh (since
the numerical component of the skier’s displacement along the downward
gravitational force is just h).

Understanding the Superposition Principle for Work (Cap. 1d)

D-1
Example: Using your previous results for the work done by each
individual force on the broom described in problem C-3, find the

work done by all forces (i.e., the total work done). Review: Does the
broom move with increasing, constant, or decreasing speed? (Answer:
123)

D-2
Interpretation: A simple pendulum (Fig.D-3) consists of a “bob”
of mass m attached by a string of length L to a support S. Sup-

pose the bob is initially released at the point A where the string is hor-
izontal. It then swings downward along a circular arc to the point B
where the string is vertical. During this motion, the gravitational force
of magnitude mg and the string tension force of magnitude Ft act on the
bob. What is the total work Wab done on the bob by all forces as the bob
moves from A to B? (Answer: 126) (Suggestion: [s-6])
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Fig.D-3.
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Fig.D-4.

Relating Work and Speed (Cap. 1,3)

D-3
(a) If the pendulum bob described in problem D-2 was initially
at rest at the point A, what is its speed vb when it reaches the

point B? (b) Suppose the bob is detached from the string and is simply
dropped from rest at the support S so that it falls vertically to the point
B. What is the total work Wsb done on the bob during this motion?
What now is the bob’s speed v′b at the point B? How does v

′
b compare

with vb? (Answer: 119)

D-4
A 1000 kg car is descending a “10 percent grade,” which means
that the car descends 1meter vertically for every 10meter it trav-

els along the road (Fig.D-4). The driver of the car wants to be able to
bring the car to a stop within 50meter from the point he applies the
brakes. To find the largest speed the car should have when the driver ap-
plies the brakes, assume that the car does travel 50meter down the road
before coming to rest, and that the frictional force exerted by the road on
the locked wheels of the car has a constant magnitude of 5.0×103N. What
is the total work done on the car during the braking process? What is
the car’s initial speed when the driver applies the brakes? (Answer: 122)
(Suggestion: [s-14])

More practice for this Capability: [p-4], [p-5]
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SECT.

E POWER

It is often important to specify how rapidly work is done. For exam-
ple, to accelerate a car from rest to a speed of 45mile/hour, it is necessary
to do on the car a certain amount of work equal to the increase of the
car’s kinetic energy. But to do this work (and thus to achieve this final
speed) in a time of 10 seconds requires a larger motor than to do this same
work in a time of 20 seconds. Similarly, the strain on a person’s heart is
very different when the work the person does to haul his body up a flight
of stairs is done rapidly rather than slowly.

Suppose then that a small amount of work δW is done during a small
enough time interval dt. Then we can describe the rate of doing work by
the ratio δW/dt which is called “power” and which we shall denote by the
script letter P. Thus we have introduced this definition:*

Def.
Power: P = δW

dt
(E-1)

* The corresponding quantities δW and dt are supposed to
be small enough so that the ratio δW/dt remains unchanged
for any smaller value of the chosen time interval dt.

The unit of power can be found from its definition, Def. (E-1). Thus

unit of power =
joule

sec
= watt (E-2)

where the combination of units joule/sec is given the special name “watt”
[in honor of James Watt (1736-1819), the inventor of the steam engine].
For example, a 100watt light bulb is designed so that, when it is turned on,
100 joule of electric work per second is done to move electrons through the
filament inside the bulb (thus heating the filament sufficiently to produce
light).

It is important to distinguish carefully between work and power. For
example, suppose that a crane lifts an object of mass m through a vertical
distance h by exerting on this object an upward force equal in magnitude
to the weight mg of the object. Then the work done on the object by the
crane is always equal to mgh. But the rate of doing this work, i.e., the
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power delivered to the object by the crane, is larger if the crane lifts the
object through this distance h in a shorter time.

Understanding the Definition of Power (Cap. 1e)

E-1
Example: To measure the power delivered to a dog sled by a team
of nine huskies, a physiologist has the huskies pull the sled along

level snow at a constant speed of 1.5m/s. She finds that the horizontal

force ~Ft exerted on the sled by the team (i.e., by the team’s harness) has
a constant magnitude of 800N. (a) What is the work δWt done on the

sled by ~Ft in a time interval dt = 2.0 second, during which the sled moves
3.0meter? What is the power Pt delivered to the sled by the dog team?
(b) Since the sled moves with constant speed, the frictional force exerted
on the sled by the snow is equal in magnitude but opposite in direction
to ~Ft. What is the work δWs done on the sled by the frictional force due
to the snow during the interval dt = 2.0 second? What is the power Ps

delivered to the sled by the snow? (Answer: 129)

E-2
Relating power to work: The unit horsepower (hp) is approx-
imately equal to 750watt. In towing a 1500 kg car, a strong

horse might be able to deliver 1.0 hp to the car for a small time inter-
val dt = 4.0 second. During this interval, what is the work done on the
car by the force exerted by the horse? Review: If the car is in neutral
gear on a level road, this work is about equal to the total work done on
the car. If the car is initially at rest, what is its speed after 4.0 second?
(Answer: 127)

E-3
Dependence of power on time interval: During the part of the
human heart cycle in which blood is expelled from the heart into

the aorta, the force exerted by the walls of the heart does about 0.9 joule
of work on the blood. (a) For a resting person, this part of the heart cycle
has a duration of about 0.3 second. Assuming that this time interval is
small enough, what is the power delivered to the blood by the heart during
this part of the heart cycle? (b) When a person does mild exercise, the
heart rate nearly doubles, so that the duration of each part of the heart
cycle is about half that for rest. By assuming that the work done on
the blood by the heart is the same during exercise as it is during rest,
estimate the power delivered to the blood by the heart of an exercising
person during the part of the heart cycle described previously. (Answer:
125)
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SECT.

F SUMMARY

DEFINITIONS

kinetic energy; Def. (A-11)

work; Def. (A-13), Eq. (B-6)

joule; Eq. (A-16)

power; Def. (E-1)

watt; Rule (E-2)

IMPORTANT RESULTS

Definitions of kinetic energy and work: Eq. (A-10), Eq. (B-6)

K =
1

2
mv2, Wab =

∫ b

a
δW =

∫ b

a
FdrF

Relation between kinetic energy and work: Eq. (B-4)

Kb −Ka =Wab where Wab is the work done by all forces.

Work done by a constant force: Rule (C-1)

W = FDF

Superposition principle for work: Eq. (D-5)

Work done by several forces jointly is equal to the sum of the works
done by the individual forces.

Definition of power: Def. (E-1)

P = δW

dt

NEW CAPABILITIES

You should have acquired the ability to:

(1) Understand these relations for a single particle:

(a) the definition of kinetic energy (Sec.A),

(b) the relation Wab = Kb −Ka (Sec. B),

(c) the relation W = FDF (Sec. C),

(d) the superposition principle for work (Sec.D)

(e) the definition of power (Sec. E).

(2) Find the sign of the work done on a particle by a force everywhere
parallel or perpendicular to the particle’s path. (Sec. B, [p-1])

(3) Relate the speed of a particle and the work done on it by all forces.
(Sec. B, [p-2] to [p-5])
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Applying Work, Kinetic Energy, and Power (Cap. 1, 3)

F-1
To propel itself, the common squid Loligo vulgaris expels from
its mantle about 50 grams of water in a single jet pulse lasting

0.1 second. During the pulse, the expelled water accelerates from rest to
a speed of 4m/s. (a) During this pulse, what is the work done on the
expelled water by all forces? (b) By assuming that this work is entirely
done by the force exerted on the expelled water by the walls of the squid’s
mantle, estimate the power delivered to the expelled water by the squid
during the pulse. (c) The action of the squid’s mantle in expelling water
is similar to the action of the heart in expelling blood (see problem E-3).
Is the power delivered to the expelled fluid by these organs about the
same, or is one value much larger (i.e., more than 10 times larger) than
the other? (Answer: 134)

F-2
The physiological stress of running is directly related to the power
delivered by the legs. Suppose an 80 kg man jogs 100meter in

20 second with a constant speed of 5m/s. Let us estimate the power
delivered to his torso by his legs if he jogs this distance in a straight path
(a) along a level field, (b) up a very gentle 1 percent grade, so that he
ascends a vertical distance of 1.0meter, and (c) up an ordinary 10 percent
grade, so that he ascends a vertical distance of 10meter. The man’s torso
(including head and arms) can be considered as a particle of mass 50 kg
moving with the man’s constant speed. The torso is acted on by a force
due to the leg muscles, a force due to gravity, and a constant force (due to
air resistance) having a magnitude of 5N and a direction opposite to the
man’s direction of motion. For each situation, use the total work W done
on the torso by all forces, the work WG done on it by the gravitational
force, and the workWA done on it by the force due to air resistance to find
the work WL done on the torso by the force due to the leg muscles, and
thus the power PL delivered to the torso by the legs. Why should physical
fitness programs specify slope as well as distance and time in their jogging
exercises? Use your results to explain. (Answer: 131) (Suggestion: [s-7])
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SECT.

G PROBLEMS

Relating Speed, Displacement, and Total Force

G-1
A 0.2 kg baseball is hit with an initial speed of 20m/s from home
plate to a point in the grandstand 15meter higher than home

plate and 20meter horizontally distant from it. Assuming that air resis-
tance on the ball is negligible, estimate the ball’s speed when it barely
misses an unwary spectator in the grandstand. (Answer: 133) ([s-1],
[p-6])

G-2
Figure G-1 shows a device used to measure the kinetic energy
and speed of electrons moving in a vacuum along the direction x̂.

The electrons pass through a charged wire screen S and travel toward a
charged plate P , 1 cm from S, where their arrival is detected by electrical
measurements. During this motion, the total force on an electron is an
electrical force ~Fe due to the charged screen and plate. The charges of
the screen and plate are adjusted until every electron comes to rest just
before it reaches the plate, so that no more electrons are detected. If the
electric force ~Fe = (−5 × 10−13N)x̂ in this situation, what is the kinetic
energy and the speed of an electron when it passes through the screen S?
Use the value 1 × 10−30 kg for the mass of an electron. (Answer: 130)
(Practice: [p-7])

G-3
Stopping distance for highway vehicles: Suppose a vehicle comes
to a panic stop on a straight level highway. Let us relate the

vehicle’s mass m, its speed v when the brakes are applied, and the “stop-
ping distance” D it travels before coming to rest. (a) The constant
frictional force exerted on the vehicle’s locked wheels has a magnitude
Ff = µFn = µmg, where Fn = mg is the magnitude of the upward nor-
mal force on the vehicle due to the highway, and µ is the “coefficient of
friction” between the tires and the highway. Using this result, find an
expression for D in terms of m, v, µ, and g. (b) The value of µ depends
only on the condition of the vehicle’s tires and of the highway surface,
Does the stopping distance D depend on the mass of the vehicle? (c)
The value of µ is about 0.50 for a car with good tires traveling on dry
pavement, What is the stopping distance D for this car if its initial speed
is 20m/s (45mph)? (d) What is D if its initial speed is twice this value?
(Answer: 128)
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G-4
Tension in a wrecking-ball cable: A “wrecking ball” of mass m
is attached to a crane by a cable of length L. In use, the ball

swings like a pendulum to strike and collapse the wall of a building being
demolished (Fig.G-2). (a) Suppose the ball is initially at rest at the point
A, and then swings downward through the point B at the bottom of its
arc, If A is a height h above B, what is the ball’s speed v when it passes
B? (b) As the ball passes B, it is moving momentarily along a circular
path with constant speed. At this time, what is the magnitude Ft of the
tension force exerted on the ball by the cable? Express your answer in
terms of m, g, h, and L. (c) Suppose that h = (1/2)L, as shown in Fig.G-
2, What is the value of Ft, expressed in terms of the weight w = mg of
the ball? (Answer: 132) (Suggestion: [s-12])
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TUTORIAL FOR A

FINDING AND DESCRIBING THE NUMERICAL COMPONENT OF
A DISPLACEMENT

a-1 PURPOSE: In this tutorial section we shall review briefly how to
find or describe the numerical component of a particle’s displacement
along the direction of a force. We do so because we need these abilities
to find the work done on the particle by the force. (You may also want
to refer to text section B of Unit 407, where we first discussed numerical
components.)

a-2 FINDING THE COMPONENT OF A DISPLACEMENT ALONG

A FORCE: Suppose a particle moves through a displacement ~D while
acted on by some force ~F that is constant during the displacement. (For

example, this displacement ~D might be the small displacement d~r dis-
cussed in text section A.) Let us begin by recalling the method for finding

the component DF of ~D along ~F . (We shall henceforth use the word
“component” as a shorthand for “numerical component.”)

(1) On a diagram, construct the component vectors of ~D parallel and

perpendicular to the direction of ~F .

-

x̂F

F
`

D
`

D = 5.0 cm

60°

(2) Using the triangle formed by ~D and its component vectors, express

the component vector parallel to ~F as a multiple of the unit vector x̂F

indicating the direction of ~F .

-

(3) The component DF of ~D along ~F is the quantity, including sign
and unit, that multiplies x̂F in the previous expression. Find DF .

- DF =
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(Answer: 4) (Suggestion: [s-10])

For comparison, let us find the component DF of several other displace-
ments having the same magnitude D = 5.0 cm as the previous one, but
different directions relative to ~F .

For each of the following displacements, find its component DF along
the force ~F .

- (a)

F
`

D
`

D = 5.0 cm, DF =

(b)

F
`

D
`

D = 5.0 cm, DF =

(c)

F
`

D
`

3
.0

c
m4

.0
c
m

D = 5.0 cm, DF =

(d)

F
`

D
`

10°

D = 5.0 cm, DF =

(Answer: 1)

a-3 DESCRIBING THE COMPONENT OF A DISPLACEMENT
ALONG A FORCE: Let us summarize the characteristics of the compo-
nent DF of a displacement ~D along a force ~F , and then use this summary
to describe the sign and magnitude of several components in an example.

For each of the directions of the displacement ~D indicated in the fol-
lowing table, give the sign of the component DF of ~D along ~F , and
state whether the magnitude |DF | of this component is larger than,
equal to, or smaller than the magnitude D of the displacement.
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-

Direction of ~D Sign of DF Comparison of |DF | to D
Along ~F

Partly along ~F

Perpendicular to ~F

Partly opposite to ~F

Opposite to ~F

Suppose a car is being towed up a hill. As it moves through a small
displacement ~D = 1meter uphill, it is acted on by the gravitational force
~Fg, the normal and frictional forces ~Fn and ~Ff due to the road, and the

towing force ~Ft shown in this drawing:

F
`

n
F
`

t

F
`

g

F
`

f

For each of these forces, describe the component of the car’s displace-
ment along the force by giving its sign and stating whether its magni-
tude is larger than, equal to, or smaller than 1meter.

- Component along ~Fg: ,

Component along ~Fn: ,

Component along ~Ff : ,

Component along ~Ft: ,

(Answer: 7) Now: Go to text problem A-1.
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PRACTICE PROBLEMS

p-1 DESCRIBING WORK DONE BY SPECIAL FORCES

(CAP. 2): An otter slides down a slippery mud bank into the wa-
ter. During this motion, what is the sign of the work done on the otter
by the frictional and normal forces ~FF and ~Fn due to the surface of the
bank? The otter then dives vertically downward to the bottom of a pool.
During this motion, what is the sign of the work done on the otter by the
gravitational force ~Fg? (Answer: 11) (Suggestion: See suggestion frame
[s-9] or review text problem B-3.)

p-2 RELATING WORK AND SPEED (CAP. 3): The so-called “mag-

netic force” ~Fm on a moving charged particle is always perpendicular to
the particle’s velocity, and thus ~Fm is everywhere perpendicular to the
particle’s path. In the “magnetic lens” of an electron microscope, this
force is the total force on an electron, and it causes the electron to travel
along a curved path. As the electron travels through the lens, is the work
done on it by the total force positive, zero, or negative? When the elec-
tron leaves the lens, is its speed larger than, equal to, or smaller than
its speed when it enters the lens? (Answer: 6) (Suggestion: review text
problem B-9.)

p-3 RELATING WORK AND SPEED (CAP. 3): The following draw-

ing shows the path of an electron in the “electron gun” of an oscilloscope
tube, where electrons emitted from a hot filament are accelerated so
that they emerge from the gun with a high speed v. After leaving the
filament, an electron, of mass 1 × 10−30 kg, enters the region between
two charged plates through a hole at the point A, travels in a straight
line for a distance of 1 cm across this region, and emerges from the gun
through a hole at the point B. During this motion, the total force on the
electron is an electric force ~Fe having a magnitude of 8 × 10−16N and
the direction indicated in the drawing. (a) What is the work done on the
electron by the total force as the electron travels from A to B? (b) If
the speed of the electron at the point A is 1× 104m/s, what is its speed
when it emerges from the gun at the point B? (Answer: 9) (Suggestion:
review text problems C-6 and C-7.)
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F
`

e

filament

A BA

1 cm

B

p-4 RELATING WORK AND SPEED (CAPS. 1 AND 3): A 200 kg

rocket used in atmospheric research is launched vertically upward from
rest on the earth’s surface. Until the rocket reaches a height of 1 kilometer
above the earth’s surface, the rocket engine produces a constant force on
the rocket of 1.8×104N upward. To make a rough estimate of the rocket’s
speed at this height, let us assume that air resistance on the rocket is
negligible. (a) What is the total work done on the rocket as it ascends
vertically to this height? (b) What is the rocket’s speed when it reaches
this height? (Answer: 5) (Suggestion: Review text problems D-3 and
D-4.) (Further practice: [p-5])

p-5 RELATING WORK AND SPEED (CAPS. 1 AND 3): A girl

of mass 20 kg slides down the home-made slide shown in the following
drawing. During this motion, the slide exerts on the girl frictional and
normal forces ~Ff and ~Fn having constant magnitudes Ff = 100N and
Fn = 170N. What is the total work done on the girl as she moves from
the top to the bottom of the slide? If the girl’s speed at the bottom of
the slide is 1.0m/s, what was her speed at the top of the slide? (Answer:
8) (Suggestion: Review text problems D-3 and D-4.)

2 meter

30°
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More Difficult Practice Problems (Text Section G)

p-6 RELATING SPEED, DISPLACEMENT, AND TOTAL

FORCE: The following drawing shows the path of a stunt car of
mass 1.5× 103 kg as it makes a jump over ten parked cars. The stunt car
leaves the ramp at the point A, 3.0meter above the horizontal track, and
lands on the second ramp at the point B, 1.0meter above the track. The
car’s speed at the point A is 19m/s. Assuming that the car moves with
negligible air resistance, estimate its speed when it lands at the point B.
(Answer: 2) (Suggestion: Review text problem G-1.)

parabola
A B

p-7 RELATING SPEED, DISPLACEMENT, AND TOTAL

FORCE: An alpha particle, of mass 7.0 × 10−27 kg, travels through
a tube 2.0meter long which forms part of a particle accelerator. During
this motion, the only force on the alpha particle is a constant electric
force having a magnitude of 1.4 × 10−15N and a direction along the
direction of the alpha particle’s motion. If the alpha particle’s speed
when it enters the tube is 1.0×105m/s, what is its speed when it emerges
from the tube? (Answer: 10) (Suggestion: review text problem G-2.)
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SUGGESTIONS

s-1 Text problem G-1: Systematically apply the relation Wab = Kb −
Ka, using text example C-2 as a guide.

s-2 (Text problem B-8): Apply the relation Wab = Kb−Ka. First find
the probe’s initial kinetic energy Ka at the earth’s orbit, and then find its
final kinetic energy Kb and speed at Mercury’s orbit by using the work
Wab done by the total force on the probe.

s-3 (Text problem A-1): To find the small work δW = FdrF done on the
ball by the total force, first find the component drF of each displacement
along this downward force, and then multiply by the magnitude F of this
force. If you need help finding the components, review tutorial frame
[a-2].

s-4 (Text problem B-7): Use the initial and final speeds of the truck to
find its initial and final kinetic energies Ka and Kb. Then use the relation
Wab = Kb−Ka to find the workWab done on the truck by the total force.
(Be careful with signs.)

s-5 (Text problem C-1): Since the elevator returns to its original posi-
tion, its displacement (i.e., the vector from its original position to its final
position) is zero, even though it traveled a distance of 30meter.

s-6 (Text problem D-2): To find the work done on the bob by the gravi-

tational force ~Fg, sketch the bob’s displacement ~D and find its component

DF along ~Fg by noting that the bob descends a vertical distance L be-

tween the points A and B. To find the work done by the tension force ~Ft,
note that ~Ft is everywhere perpendicular to the bob’s circular path.

s-7 (Text problem F-2): According to the superposition principle for
work, the work W done on the torso by all forces is the sum W = WL +
WG +WA done by each individual force on the torso. But W must be
zero, since the man’s torso moves with constant speed and hence constant
kinetic energy. By calculating the works WG and WA, you can thus find
WL.

s-8 (Text problem C-3): For each force, make a quick sketch showing

the broom’s displacement ~D and the direction of the force. Then use your
sketch to find the component DF and the work W = FDF for each force
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separately. (For help in finding the components, review tutorial section
A.)

s-9 (Text problem B-3): In each case, compare the direction of the
particle’s motion along its path (i.e., the direction of successive small dis-
placements of the particle) with the direction of the force. If the directions
are the same, the work done by the force is positive; if the directions are
perpendicular, the work done by the force is zero; if the directions are
opposite, the work done by the force is negative.

s-10 (Tutorial frame [a-2]): To find the component vectors of ~D parallel

and perpendicular to ~F , first draw a line from the beginning of ~D parallel
to ~F . Then draw a line from the end of ~D perpendicular to ~F . These lines
will intersect at a point P . The component vector of ~D parallel to ~F is
the vector drawn from the beginning of ~D to the point P . The component
vector of ~D perpendicular to ~F is the vector drawn from the point P to
the end of ~D. (If you need more help, review text section D of Unit 407.)

s-11 (Text problem B-1): In each small displacement d~r, the small work

done on the carriage by the force ~Fw is δW = FwdrF = (10N)(+ 1meter)

= 10 joule, since each displacement is along the direction of ~Fw. In trav-
eling the 50meter distance from A to B, the carriage makes 50 of these
small displacements, so the sum of the small works done along this path
(i.e., the work done along this path) is 50(δW ) = 5.0× 102 joule.

s-12 (Text problem G-4): Part (b): Since the ball is moving momentar-
ily with constant speed v along a circular path of radius L, its acceleration
is a = v2/L upward. Use your value for v to express this acceleration in
terms of m, g, h, and L. Then apply the equation of motion to relate this
acceleration to the downward gravitational force and the upward tension
force ~Ft, using an upward unit vector to indicate directions, and solve for
Ft.

s-13 (Text problem C-6): Apply the relation Wab = Kb −Ka system-
atically in the manner outlined in text example C-2. First make a quick
sketch showing the truck driver’s path and the distances h and L. Then
use your sketch to express the work Wab in terms of the symbols provided
by finding the component DF of the driver’s displacement along the grav-
itational force. Complete the relation Wab = Kb −Ka by expressing the
driver’s initial and final kinetic energies in terms of the symbols provided.
Simplify this equation, and then solve for vb.

42



MISN-0-414 Suggestions Supplement su-3

s-14 (Text problem D-4): Make a sketch showing the car’s displacement
~D and the direction of the three constant forces acting on the car. Use
your sketch to find the component of ~D along the two forces that are
not everywhere perpendicular to the car’s path. (Note that if the car
moves 50meter down the road, it descends 5meter vertically.) Find the
total work done on the car by adding the work done by each force (being
careful with signs), and then applyWab = Kb−Ka to find the car’s initial
kinetic energy and hence its initial speed.

s-15 (Text problem C-5): Part (a): Sketch the bird’s displacement ~D
(the vector from its original position to its final position) for each path.
Then use your sketch to find the sign of the component DF of this dis-
placement along the gravitational force ~Fg. (You may want to refer to
your summary in tutorial frame [a-3].) Then answer the questions, re-

calling that the work done by ~Fg has the same sign as the component
DF .

Part (b): Compare the components for the displacements corresponding

to the bird’s paths: if the component DF along ~Fg is the same for two

paths, the work done by ~Fg is the same. (Several paths having the same

component along ~Fg are illustrated in Fig. C-2.)

s-16 (Text problem C-2): In each case, make a sketch showing the dis-

placement ~D of the particle and the force ~F in question. Remember that
the displacement is the vector from the particle’s initial position to its
final position, irrespective of the path the particle takes between these
two points. Then use the information provided, and the methods re-
viewed in tutorial section A, to find the component DF of the particle’s
displacement along the force.

For example, the following drawing shows the displacement ~D of the car
described in part (a), the gravitational force ~Fg, and the component vec-

tors of ~D parallel and perpendicular to ~Fg. By finding one of the angles in

the triangle formed by ~D and its component vectors, find the component
DF of ~D along ~Fg.
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F
`

g

D
`

6% D = 20 meter
- DF =

(Answer: 3) Now: Return to text problem C-2.
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ANSWERS TO PROBLEMS

1. a. DF = −5.0 cm
b. DF = 0

c. DF = 3.0 cm

d. DF = 4.9 cm

2. 20m/s

3. DF = −(sin 6◦)(20meter) = −(cos 84◦)(20meter) = −2.1meter

4. (1)

x̂F

F
`

D
`

60°

(2) (−2.5 cm) x̂F (3) DF = −2.5 cm
5. a. 1.6× 107 joule (NOT 1.8× 107 joule
b. 4× 102m/s

6. zero, equal to

7.
Direction of ~D Sign of DF Comp. of |DF | to D
Along ~F + equal to

Partly along ~F + smaller than

Perpendicular to ~F 0 smaller than

Partly opposite to ~F − smaller than

Opposite to ~F − equal to

~Fg : −, smaller; ~Fn : 0, smaller; ~Ff : −, equal; ~Ft: +, equal.

8. zero, 1.0m/s

9. a. 8× 10−18 joule

b. 4× 106m/s

10. 9× 105m/s

11. ~Ff : −~Fn : 0 ~Fg : +
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101.
Kinetic energy Work

Kind of quantity number number
Possible signs +, 0 +, 0, −
SI unit joule joule
Unit (kg, m, s) kg m2/s2 kg m2/s2

The possible signs are different for the two.

102. a. 20 joule

b. 40 joule

103. a. 2.0× 105 joule
b. zero

c. 2.0× 105 joule
104. a. 10 joule

b. A to B: 5.0 × 102 joule. B to B: 1.0 × 103 joule. B to A: 5.0 ×
102 joule.

c. 2.0× 103 joule
105. a. K0 = 0.4 joule

b. Kc = K0 + δW = 0.1 joule. vc = 1m/s

106. (1) −0.3 joule, (2) zero, (3) + 0.3 joule, (4) + 0.6 joule

107. Wab = −45 joule (note sign)

108. −9.0× 105 joule (note sign)
109. a. −

b. 0

c. −
d. +

110. negative

111. Comet: smaller, decrease. Planet: equal, constant. Box: smaller,
decrease. Electron: larger, increase.

112. No. Although the positions are the same, the velocities are different
(opposite directions).

113. ~Fm: +50 joule. ~Fg: zero. ~Ff : −50 joule. ~Fn: zero.
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114. 1× 104m/s
115. a. Cannot be found without knowing the work done on the elevator

by the total force, which is due to both the cable and the earth.

b. 0.05 joule

116. a. −2.5× 104 joule
b. 1× 10−17 joule

c. −6.0× 105 joule
117. a. 1: perpendicular, zero. 2 and 3: partly opposite, negative. 4:

partly along, positive. 5 and 6: along, positive.

b. 2 and 3, 4 and 5

118. a. Upward: DF = −15meter, W = −1.5 × 105 joule. Downward:
DF = +15meter, W = +1.5 × 105 joule. Entire Trip: DF = 0,
W = 0.

b. Yes

119. a. vb =
√
2gL

b. Wsb = mgL, v′b =
√
2gL, v′b = vb

120. ~Ff and ~Fm, because they are not constant in direction

121. 9× 106m/s

122. −2× 105 joule, 20m/s (if you differ, you are wrong)

123. zero, constant speed

124. a. Wab =Mgh, vb =
√

v2
a + 2gh

b. 4m/s

c. 5m/s

125. a. 3watt

b. 6watt

126. Wab = mgL

127. 3.0× 103 joule, 2.0m/s
128. a. D = v2/2µg

b. No.

c. D = 40meter
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d. D = 160meter!

129. a. δWt = 2.4× 103 joule, Pt = 1.2× 103 watt
b. δWs = −2.4× 103 joule, Ps = −1.2× 103 watt

130. 5× 10−15 joule, 1× 108m/s
131. a. WL = 500 joule, PL = 25watt

b. WL = 1.0× 103 joule, PL = 50watt

c. WL = 5.5× 103 joule, PL = 280watt
Because even a small slope greatly increases the power required
and thus the physiological stress. (In fact, only athletes in top
condition could hope to manage (c).)

132. a. v =
√
2gh

b. Ft = mg +ma = mg + 2mgh/L

c. Ft = 2w, twice the ball’s weight!

133. 10m/s

134. a. 0.4 joule

b. 4watt

c. about the same
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MODEL EXAM

1. Work done on a charged oil drop. As a student performs the
Millikan oil drop experiment, a charged oil drop moves from the point
A to the point B along the path shown in the following drawing. The
drop is acted on by a constant electric force ~Fe = 4× 10−15N upward
due to the charged plates.

A

0.5 cm

0.5 cm

B

parabola

1.0 cm

What is the work done on the drop by the force ~Fe as the drop moves
along this path?

2. Motion of a car ascending a hill. A woman is driving her
1000 kg car up a “10 percent grade,” which means that the car as-
cends 1.0meter vertically for every 10meter it travels along the road.
Seeing a police car ahead, the woman gently applies the brakes, so
that the road surface exerts a constant frictional force of magnitude
1.0× 103N on the car as it travels a distance of 50meter up the hill.

a. As the car travels this distance, what is the work done on it by all
forces?

As the car travels up the hill from the point the woman applies the
brakes to a point opposite the police car, the work done on the car by
all forces is −1.5× 105 joule.

b. If the car has a speed of 20m/s when the woman applies the brakes,
what is its speed when it passes the police car?

3. Decay of a tritium nucleus. The nucleus of a tritium atom (a ra-
dioactive isotope of hydrogen) decays to a helium nucleus by emitting
a high-speed electron. During part of the decay process, the emitted
electron travels directly away from the positively charged helium nu-
cleus under the sole influence of the Coulomb electric force due to this
nucleus.
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a. During this motion, is the work done on the electron by all forces
positive (+), zero (0), or negative (−)?

b. During this motion, does the electron’s kinetic energy increase, re-
main the same, or decrease?

Brief Answers:

1. 2× 10−17 joule

2. a. −1.00× 105 joule
b. 10m/s

3. a. negative (−)
b. If answer (a) is +, increase

If answer (a) is 0, remain same

If answer (a) is −, decrease
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