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Abstract:
Since science deals with observations, the minimum requirement for any
scientific progress is a symbolic language capable of describing observa-
tions conveniently and unambiguously. Indeed, some of the most far-
reaching scientific advances (such as the relativity and quantum theories)
originated from the realization that the description of some seemingly
simple observations had been inadequate. In the present unit we shall
discuss some general methods of description useful throughout all the sci-
ences. This discussion is intended to review, and to define more precisely,
some basic concepts which are probably already familiar from previous
experience.
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SECT.

A QUANTITATIVE DESCRIPTION

The aim of description is to make apparent similarities and differences
between observations by assigning the same symbol to observations which
have common features and different symbols to observations which have
different features. To avoid ambiguities, any procedure used to associate
symbols with observations must be operationally well defined, i.e., it must
specify precisely what one must actually do in order to assign particular
symbols to particular observations.

The symbols used for description may be words, called “properties,”
which can be assigned to something observable according to some specified
procedure. (For example, the word “long” might be assigned to a car if it
extends beyond both ends of a particular curbstone next to which the car
may be parked.) Such a “qualitative” description in terms of properties is
useful, but may often be inadequate because it is not sufficiently detailed.
(For example, both a passenger car and a trailer truck might be designated
by the same word “long” according to our definition of this property.)

A description is “precise” or “detailed” if any distinction which one
wishes to make between observations can be represented by a correspond-
ing distinction in the description of these observations. Such a precise
description can be achieved by using as symbols numbers as well as words.
We call a “quantity” a property to which it is possible to assign a num-
ber (or a set of numbers) according to some specified procedure. The
procedure whereby this number is assigned is called a “measurement.”
(Familiar examples of such quantities are the number of bacteria in a
drop of water or the length of an object.)

MEASUREMENT PROCEDURES

When some observable thing has distinct features, the quantity called
the “number of these features” can be obtained by merely counting the
features. Thus it is quite straightforward to count the number of fingers
on a hand or the number of bacteria in a drop of water. The number
obtained as a result of such a counting process is always some integer.

When one deals with a property which is not characterized by discrete
features (e.g., with the length of some object), a number can be assigned
to this property by specifying some comparison procedure which involves
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indirectly some counting process. The following two sections will illus-
trate such comparison procedures by discussing the two quantities called
“length” and “time” which are of the most fundamental importance in all
the sciences.
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SECT.

B LENGTH

Consider a line (curved or straight) joining two points P and P ′.
We wish to describe this line by a quantity called its “length” (or the
“distance” along the line). To refine our intuitive notion of length, we
shall now specify an operationally clearly defined procedure for assign-
ing a meaning and a number to this word “length.” (This procedure is
suggested by the common way of using a meter stick in everyday life.)

To carry out the procedure, we shall compare the line with a mea-
suring instrument which we choose to be a rigid rod. The comparison can
then be carried out in the following way by making repeated observations
of the coincidence between two points in space: We place the rod so that
one of its ends coincides with the beginning point P of the line and so
that its other end also lies on the line. Then we continue in a similar way
by placing the rod repeatedly end-to-end next to the line, as shown in
Fig. B-1a. Finally, we count the complete number N of times that the rod
can be placed in this way end-to-end next to the line without extending
beyond the end point P ′ of the line.

[Suppose that we used the preceding procedure with a rod which is
“shorter,” i.e., which can be placed end-to-end next to the line a larger
number of times (as illustrated in Fig. B-1b). Then the end point of such
a rod, when placed next to the line the last time, is likely to coincide more
closely with the end point P ′ of the line.]

(a) (b)

N = 3 N = 8

P P

P' P'

rod rod

Fig. B-1: Measurement of a line with different rods. (a)
Measurement with a rod which can be laid end-to-end N = 3
times. (b) Measurement with a shorter rod for which N = 8.
(Only the successive positions of the ends of the rod are
indicated.)
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N =121

N = 82

P1

P2

P
'

1

P
'

2

rod

Fig. B-2: Comparison of the
lengths of two lines with a mea-
suring rod. Only the successive
positions of the ends of the rod
are indicated in the diagram. If
the rod is short enough for the
desired precision of measurement,
L1/L2 = 12/8 = 1.5.

Now that we have described how to compare a line with any mea-
suring rod, we can specify the following procedure for comparing the
“lengths” L1 and L2 of any two lines 1 and 2 (such as the line 1 between
P1 and P

′
1 and the line 2 between P2 and P

′
2 in Fig. B-2): Take any mea-

suring rod. Count the number N1 of times that this rod can be placed
end-to-end next to line 1 and the number N2 of times that it can be
placed end-to-end next to line 2. Compare these measurements by calcu-
lating the ratio N1/N2. Repeat the preceding procedure with successively
shorter rods (so that the numbers N1 and N2 become successively larger)
until the value of the ratio N1/N2 remains unchanged (within the desired
precision) if we use any shorter rod. Then we define the lengths L1 and
L2 of the lines to be such that the ratio L1/L2 is equal to this final value
of the ratio N1/N2. This definition is illustrated in Fig. B-2.)

To summarize, the quantity called “length” (and denoted by the
symbol L) is defined to be such that the ratio of the lengths of any two
lines is obtained by the preceding measurement procedure according to
this specification:

L1

L2

=
N1

N2

(when N1 and N2 are large enough) (B-1)

This definition of length is an operational definition since it describes
precisely what one must do to determine the ratio of any two lengths.

STANDARD OF LENGTH

Since the definition of length involves a comparison procedure, it
specifies merely the ratio of the lengths of any two lines, but does not
specify a unique value for the length of any one line. This ambiguity can
be eliminated if one agrees always to measure the lengths of all lines by
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comparison with the same particular object S (called the “standard” of
length) whose length can be simply denoted by the algebraic symbol LS .

To facilitate communication between all people, it is desirable that
everyone in the world agrees about the choice of this standard. Such in-
ternational agreements are nowadays reached by scientific meetings which
select with great care a standard which has as many desirable properties
as possible. (For example, a standard should be indestructible and should
allow one to make precise measurements.)

Until a few years ago, international convention specified as the stan-
dard of length a carefully preserved metal bar kept in a vault near Paris.
This standard was called the “standard meter bar” and its length LS was
denoted by the algebraic symbol “meter” by writing: LS = meter.*

* Note that the whole word “meter” is regarded as a single
algebraic symbol, just as is LS .

(The length of this standard meter bar is roughly the same as that of a
stick a yard in length.) More recently, the length denoted by “meter”
has been redefined as the length of the path travelled by light in vac-
uum during a time interval of 1/299 792 458 of a second.1 However, the
redefinition of the meter is such that the old standard meter bar is still
extremely close to 1 meter in length when compared to the new standard.2

The preceding discussion of the operational definition of length should
enable you to answer these questions:

B-1
Illustration: measuring area by comparison: Using the definition
of length as a model, we can construct a definition of area by

describing how to compare the areas A1 and A2 of two regions of surfaces.
To compare these areas, choose a very small square and lay it side by side
as many times as possible within each of the regions 1 and 2, counting the
numberN1 of times the small square can be placed within the region 1 and
the number N2 of times the small square can be placed within the region

1See http://physics.nist.gov/cuu/Units/current.html.
2from PEN, August 1998: IT’S ABOUT A YARD. The first official definition of

the meter was decreed by the new Republican Government of France in August 1793
as, one-ten-millionth of the distance between the North Pole and the Equator. This
rather pedestrian (terrestrial?) definition of the meter has been displaced by the
mighty photon, so that now we conventionally define the meter as the length of the
path traveled by light in a vacuum in 1/299,792,458 of a second. The intellectual
distance between 1793 and 1998 is the subject of a Web site hosted by the National
Institutes of Standards and Technology. This Web site tells the tale of the tape, so to
speak, in narrative and chronological form, tracing the history of the standard meter.
To learn more go to http://www.mel.nist.gov/div821/museum/length.htm.
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As

Al

Fig. B-3: A peanut leaf with area Al, a stan-
dard square with area As, and a small square
used for comparing these areas.

2. Then the areas A1 and A2 are defined so that A1/A2 = N1/N2, where
the numbers N1 and N2 are large enough that replacing our small square
by a still smaller square will not change the value of the ratio N1/N2

within the precision we desire. Using this definition, compare the area
Al of the peanut leaf shown in Fig. B-3 with the area As of the standard
square shown by finding the ratio Al/As. For the precision desired here,
the small square shown is small enough. (Answer: 101)

Operational Specification of Measurement

B-2
A dictionary defines the temperature of an object as “the de-
gree of warmth or coolness of the object.” Is this an operational

specification of measurement? Briefly explain why or why not. (Answer:
105)
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SECT.

C TIME

Consider any two events occurring at the same place. We wish to
describe the relationship between these events by a quantity called the
“time” between these events. To refine our intuitive notion of time, we
need again to specify a clearly defined procedure for assigning a meaning
and a number to the word “time.”

To carry out the procedure we shall compare the two events with a
measuring instrument called a “clock” and defined as follows:

Def.
Clock: Any device having a configuration (i.e.,
a measurable characteristic) which recurs repeti-
tively.

(C-1)

For instance, a wrist watch is a clock because its rotating big hand points
recurrently to the same position (e.g., to the number 12 on the dial). The
earth rotating about its axis is also a clock since one can observe the
recurrent daily passages of the sun across the highest point on the sky.

To measure the time between two events E and E ′ occurring at the
same place, we use a clock located at this place. We then carry out the
following comparison procedure involving the observation of the simul-
taneity (i.e., temporal coincidence) of events: When the first event E
occurs, we note the configuration of the clock. We then simply count
the number N of subsequent repetitions of this configuration until the
occurrence of the second event E ′ as indicated for N = 2 in Fig. C-1.

[Suppose that we used the preceding procedure with a clock which
is “faster,” i.e., which repeats its same configuration a larger number of
times (see the n = 6 case, Fig. C-1). Then the initial configuration of the
clock is likely to occur more nearly simultaneously with the second event
E′.]

E1
× ×

E
'

` ` `

`` ` `` `` N = 6

N = 2

Fig. C-1: Measurement of the time
between two events with different
clocks. First, measurement with a
clock which repeats its configura-
tion N = 2 times. Second, mea-
surement with a faster clock for
which N = 6.
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E2E1

××

E
'

1E
'

2

`` ` ` ` ` `` ` ``

N = 42

N = 101

* *

Fig. C-2: Comparison of two times with a clock. If the
clock is fast enough for the desired precision of measure-
ment, the time T1 between the events E1 and E′1 and
the time T2 between the events E2 and E′2 are such that
T1/T2 = 10/4 = 2.5.

Now that we have described how to compare the time between two
events with any clock, we can specify the following procedure for com-
paring the “time” T1 between two events E1 and E

′
1 with the “time” T2

between two events E2 and E
′
2:

(i) Take any clock.
(ii) Count the number N of successive repetitions of this clock between
the events E1 and E

′
1 and the number N2 of successive repetitions of this

clock between the events E2 and E
′
2. (See Fig. C-2.)

(iii) Compare these measurements by calculating the ratio N1/N2.
(iv) Repeat the preceding procedure with a series of faster clocks (so that
the numbers N1 and N2 become correspondingly larger) until the value of
the ratio N1/N2 remains unchanged (within the desired precision) if we
use any faster clock.
(v) Then we define the times T1 and T2 between these pairs of events to
be such that the ratio T1/T2 is equal to this final value of the ratio N1/N2.

To summarize, the quantity called the “time” between two events
(and denoted by the symbol T ) is defined to be such that the ratio of
the times between any two pairs of events is obtained by the preceding
measurement procedure according to this definition:

T1

T2

=
N1

N2

(when N1 and N2 are large enough). (C-2)

This definition of time is an operational definition since it describes pre-
cisely what one must do to determine the ratio of any two times.
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STANDARD OF TIME

Since the definition of time involves a comparison procedure, it spec-
ifies merely the ratio of any two times, but does not specify a unique
value for any one time. This ambiguity can be eliminated if one agrees
always to measure all times by comparison with the same particular clock
S (called the “standard” of time). The “period” of this clock may then
be simply denoted by the algebraic symbol TS . Here the word “period”
has this meaning:

Def. Period of a clock: The time between successive
repetitions of the same configuration of the clock.

(C-3)

Although the choice of a standard is basically arbitrary, it is desirable to
choose a standard which has, as far as possible, the following properties:
(a) Measurements with this standard should lead to a simple description
of observed phenomena. (b) The standard should permit one to make pre-
cise measurements. (c) The standard should be permanent and should be
readily available.

CHOICE OF DESIRABLE STANDARDS

The first of the preceding properties is the most important and can be
illustrated by the actual choice of the standard of time. Until a few years
ago, the clock chosen as this standard was the earth rotating about its
axis. But then one began to compare this clock with many other clocks,
including various very precise “atomic clocks” which rely on repetitive
phenomena occurring within atoms or molecules. It was then found that
all these other clocks speed up when compared to the earth (i.e., that
all their periods become gradually smaller when compared to that of the
earth), although they remain synchronized when compared to each other
(i.e., the ratio of their periods remains unchanged). It then became appar-
ent that the world can be described more simply by choosing a particular
atomic clock as the standard of time. For then all the other clocks which
we have considered remain always synchronized with this atomic clock.
Only the earth seems then anomalous since it gradually slows down com-
pared to the atomic clocks (by nearly one second per year).

When the earth rotating about its axis was adopted as the standard
of time, the period TS of the earth (i.e., the time between successive
passages of the sun across the highest point of the sky) was assigned
various algebraic symbols such as “day” or “second” defined so that

14
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TS = 1day = 86, 400 second.∗ (C-4)

* These definitions conform with the traditional use of fa-
miliar names used as algebraic symbols and defined so that
day = 24 hour, hour = 60minute, minute = 60 second.

Since the earth is not the most desirable standard of time, an atomic
clock using cesium atoms has recently been internationally adopted as
the standard of time.3 Although the “second” is now defined in terms of
this new standard, this redefinition has been made so that the period of
rotation of the earth is still 86,400 second to an excellent approximation.

REMARK ON THE INADEQUACIES OF OUR DEFINI-
TIONS

Although we have seemingly been quite careful in defining the basic
concepts of length and time, we have failed to consider some important
situations. In particular, we have not defined explicitly how to measure
the time between two events occurring at different places, nor even what
we mean by saying that two such events occur “at the same time.” At
present we shall merely assume that these notions can be adequately
defined (e.g;, by using radio signals to compare clocks located at different
places). But this assumption is questionable and will ultimately cause
difficulties in making precise predictions or in describing motion with very
high speeds. We shall then be forced to provide an adequate definition
for the time between events occurring at different places. Indeed, this
definition is the basic foundation of Einstein’s theory of relativity and has
very far-reaching implications.

3See http://physics.nist.gov/cuu/Units/current.html.
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SECT.

D STANDARDS AND UNITS

All quantities (such as length or time) which are measured as a result
of a comparison procedure have these properties: (1) They must involve a
specification of the standard used in making the comparison, and (2) they
must have some error associated with them (since no actual comparison
can ever be carried out with unlimited precision). We shall discuss the
specification of standards in this section and shall make some comments
about errors in the next section.

As we have seen in the case of lengths or times, a comparison
procedure merely specifies the ratio of the values of two quantities of the
same kind. One can, however, agree to choose one particular object as
a “standard” and then to specify the value of every other quantity by
comparison with this object. Thus we introduce this definition:

Def.
Standard: A standard for some quantity is a par-
ticular object with which all such quantities are to
be compared.

(D-1)

The quantity specified by the standard can be assigned a value denoted
by an algebraic symbol called a “unit” defined as:

Def. Unit: An algebraic symbol denoting a quantita-
tive value defined by a standard.

(D-2)

For example, once the meter was chosen as the standard of length, its
length LS may be expressed in terms of various conveniently chosen
algebraic symbols (such as “meter, ” “centimeter,” “inch”) all of which
are called “units of length.” For example, the length LS is assigned the
values LS = meter or LS = 100 centimeter. Hence these units are related
so that*

meter = 100 centimeter (D-3)

* A unit, such as “meter,” has no plural form in this book;
we write “6.1meter,” not “6.1meters.” When one multiplies
“6.1” by “x,” one never writes the result as “6.1 xs” but rather
as “6.1 x.” Thus when one multiplies “6.1” by “1meter,” one
should write the result as “6.1meter.” Nevertheless, almost
all scientists and engineers say “6.1meters.”

16



MISN-0-403 D-2

The measuring procedure used to compare a quantity with a stan-
dard always determines a ratio. For example, one might find

L

LS

= 5.2

where L is the length of some line and LS is the length of the standard
meter. Then one can also write

L = 5.2LS or L = 520 centimeter

if one uses the definition LS = 100 centimeter to express LS in terms of
the unit centimeter. Thus we see that any quantity measured by com-
parison with a standard can always be expressed as a “pure number”
(i.e., a number without any associated units) multiplied by some unit
corresponding to this standard. Note that the specification of the unit is
essential to avoid ambiguity. A statement such as L = 520 is meaningless
since it does not specify what kind of comparison was used to arrive at
the number 520.

Since the quantity specified by a standard can be expressed in terms
of various units (e.g., LS = meter = 100 centimeter), any quantity can
be expressed in terms of various units. Since units are merely algebraic
symbols, one can use the rules of algebra to convert between these units.

Example D-1: Conversion between units

The length of a certain line is L = 2.7 centimeter. What is this
length expressed in terms of the unit “meter”?

Since the units meter and centimeter are related so that
meter = 100 centimeter, one can solve this equation for centimeter
to obtain

centimeter = 0.01meter.

Then one finds by direct substitution that

L = 2.7 centimeter = 2.7(0.01meter) = 0.027meter.

BASIC STANDARDS AND UNITS

Any scientific discussion usually involves various different kinds of
quantities which can be measured by comparison with several different
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standards. One can then choose a set of “basic standards” according to
this definition:

Def.

Basic standards: A particular set of standards
which can be chosen independently of each other
and which are sufficient to permit the measure-
ment of all quantities of interest.

(D-4)

With each such standard one can then associate some “basic unit.”

Def.
Basic unit: The basic unit corresponding to a
basic standard is a particularly chosen unit defined
in terms of this standard.

(D-5)

All other standards and units are then said to be “derived” from these
basic standards and units. For example, centimeter, meter2, and me-
ter/second are all units derived from the basic units “meter” and “sec-
ond.”

The basic standards and units adopted by the most recent interna-
tional agreement is called the “SI system” of standards and units. (SI
stands for Systeme International.) In order to meet all scientific needs,
this system has adopted seven convenient basic standards and correspond-
ing basic units which are described in detail in the appendix. For example,
the SI basic standard of length is the krypton atom and the SI basic unit
of length is the “meter” defined in terms of a particular wavelength of
light emitted by such a krypton atom. The basic SI standard of time is
an atomic clock using the cesium atom and the basic SI unit of time is
the “second” defined in terms of the period of this particular clock.

All other standards and units (including the old British units still
used in the United States) can be related to the basic SI standards
and units. (For example, when expressed in terms of SI units, a speed
of 45mile/hour ≈ 20meter/second.) We shall use primarily SI units
throughout this book.

QUANTITIES INDEPENDENT OF STANDARDS AND
UNITS

Some quantities can be measured and assigned unambiguous numeri-
cal values without the need to use any standards. For example, this is the
case of any quantity whose value can be obtained by direct computing.
(When we say that a hand has 5 fingers, the word “fingers” is not a unit
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since no standard is required to count the number of fingers.) Similarly,
the ratio of any two quantities of the same kind can be determined by di-
rect comparison with each other without the need to use a standard or any
units associated with such a standard. For example, the ratio L1/L2 of
two lengths can be measured by direct comparison without a standard and
is thus a pure number independent of any units. Even if we did use a stan-
dard to measure these lengths (thus finding values such as L1 = 6meter
and L2 = 3meter), the ratio L1/L2 = (6meter)/(3meter) = 2 is properly
a pure number since the unit meter has disappeared from this ratio.

DEPENDENCE OF EQUATIONS ON UNITS

Any equation, such as A = B, asserts that the quantities A and B
are always equal. Such a generally valid relationship must remain true
independently of what particular standards (or associated units) happen
to be chosen for the measurement of A and B.*

* This conclusion is also apparent by noting that A = B
implies that A/B = 1, which is a pure number independent
of any units.

Suppose that both A and B are expressed in terms of the same set of basic
units (e.g., SI units). Then A and B can each be written as some pure
number multiplied by some combination of basic units. The equality A =
B then implies that the pure numbers on both sides of the equation must
be equal and that the basic units appearing on both sides of the equation
must also be equal. This conclusion about units can be summarized by
this statement:

Condition of unit consistency : Both sides of an equa-
tion must be expressible in terms of the same combi-
nation of basic units.

(D-6)

This condition provides a very useful way of checking equations or of
finding correct equations. For example, any lack of consistency between
basic units on both sides of an equation immediately indicates that the
equation must be wrong. Similarly, if a quantity (such as A) consists of
a sum or difference of several terms, each of these terms must have the
same combination of basic units since the condition of unit consistency
could otherwise not be satisfied. The discussion of units and standards in
this section should enable you to acquire these capabilities:
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Knowing About Standards, Units, and SI Units

D-1
Standards and units: Which of the following phrases describes a
standard and which a unit? (a) a thing used for comparison in

measuring all quantities of a particular kind; (b) a symbol for a quan-
tity; (c) a thing which should be permanent, indestructible, and readily
accessible; (d) a symbol which is manipulated using the rules of algebra.
(Answer: 109)

D-2
SI units: (a) Which of these values is expressed in terms of SI
units: 50mile/hour, 10 second−1, l0meter/second? (b) Which

of these lengths is closest to your height: 20meter, 2meter, 0.2meter?
(Answer: 113)

Finding Values for Quantities (Cap. 1)

D-3
The volume flow rate F of blood through parallel capillaries is
given by the equation F = nas, where n is the number of capillar-

ies, a is the cross-sectional area of each capillary, and s is the average speed
of blood in the capillaries. For the messentary (tissue supporting the intes-
tine) of a dog, these quantities have the approximate values: n = 1.0×109,
a = 5.0×10−5millimeter2, s = 9.0×10−3millimeter/minute. (a) Find the
value of the flow rate F , using the units millimeter and minute. (b) Use
the relations millimeter = 1.0× 10−1 centimeter and minute = 60 second
to express F using the more common units centimeter and second. (An-
swer: 116) (Suggestion: [s-6])

D-4
If an object travels with constant speed around a circle of radius
R, the speed s of this object is given by the relation s = 2πR/T ,

where π = 3.14 and T is the time required for the object to travel once
around its path. A test tube in a medical centrifuge travels once around
a circle of radius 18 centimeter in a time of 3.0 × 10−4minute. Find the
value of the speed of the test tube, expressing your answer in terms of SI
units. (Answer: 102) (Suggestion: [s-1])

More practice for this Capability: [p-1]

Unit Consistency In Equations (Cap. 2)

The following problems illustrate the use of unit consistency to check an
equation or an expression of which you are unsure.

20



MISN-0-403 D-6

D-5
Suppose you wish to find the flow rate R of pollutant particles
through a smokestack. You remember that R is related to the

cross-sectional area A of the stack, the speed S of the rising air, and the
number N of particles per unit volume of air, but you cannot remember
which of the following equations is correct: R = AS/N or R = ASN .
The units of the relevant quantities are: R( sec−1 or 1/ sec), A(meter2),
S(meter/sec), N(meter−3 or 1/meter3). Which of the two equations is
correct? (Answer: 106) (Suggestion: [s-4])

D-6
The cost of a cylindrical blood collection bottle depends on its
surface area S, while its volume V determines the amount of

blood it can hold. If the collection bottle has height H and radius R,
one of the following expressions equals the surface area S, one equals the
volume V and one expression is meaningless. (Remember that π = 3.14).
(a) 2πRH + 2πR2, (b) 2πR2H + 2πR, (c) πR2H. Identify the correct
expressions for S and V , and briefly describe why the remaining expression
is meaningless. (Answer: 110) (Suggestion: [s-3])

More practice for this Capability: [p-2]
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SECT.

E ERRORS

No measurement by a comparison procedure can ever be carried out
with unlimited precision. (For example, in a measurement of length the
observation of the coincidence between points can only be made with some
residual uncertainly.) Repeated measurements of the same quantity under
seemingly identical conditions lead thus to numbers which are not exactly
the same, but which differ from each other slightly in some unpredictable
way. The extent of the difference between such repeated measurements
is called the “random error” involved in the measurement. This random
error can be reduced, but never completely eliminated, by refining the
method of observation (e.g., by using a magnifying glass to observe the
coincidence between points in a measurement of length). However, the
counting of separate, distinct objects results in an integer and there should
be no uncertainty whatsoever about such a value.

Our inability to measure with infinite precision certainly creates an
uncertainty about the “true” values of measured quantities, but there
exist more subtle sources of error. For example, suppose that compari-
son of the length L of some object with a meter stick leads to the result
L = 1.473meter. Suppose now that a later check of this meter stick
against a standard meter showed that the length of this meter stick is re-
ally 1.002meter rather than 1.000meter. Then the value L = 1.473meter
would be “inaccurate” (no matter how precisely it has been measured)
because this value is not equal to the “true” value which one claims to
be measuring. The “systematic error” of a measured quantity is the dif-
ference between the measured value of this quantity and the value one
claims to be measuring. The magnitude of the systematic error can be
estimated by checking the extent of consistency obtained when the same
quantity is measured by significantly different methods.

The total error associated with any measured quantity consists or-
dinarily both of random and systematic errors, so both of them must
be kept in mind. (For example, it would be foolish to use elaborate in-
strumentation to reduce the random error of a length measurement to
10−6meter when one suspects systematic errors as large as 10−3meter.)

An adequate specification of any measured quantity X requires thus
not only a specification of its numerical value (and associated units), but
also a specification of the error associated with this quantity. It is cus-
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tomary to specify this information by writing

X = E ± e (E-1)

where E is the best estimate of the quantity X and where e is the “prob-
able error” associated with this quantity. Statement (E-1) usually implies
that there is about a two-thirds probability that the true value of X lies
between E−e and E+e. The quantity e/E is called the “relative error” or
“fractional error” in the quantityX; it is useful since it compares the mag-
nitude of the error relative to the magnitude of the quantity itself. (For
example, an error of 1 centimeter in a length of 10,000 centimeters may be
quite negligible, while an error of 1 centimeter in a length of 2 centimeters
may be of substantial importance.)

Example E-1: Specification of error

The statement that length L = (4.783± 0.002)meter carries the im-
plication that the true value of L has a two-thirds probability of lying be-
tween 4.781meter and 4.785meter. The probable error is then 0.002meter
and the relative error is 0.002/4.783 = 4× 10−4 (or 0.04 percent).

If one is satisfied with an approximate specification of the error, one
may omit the explicit statement of the error and specify the error implic-
itly by the number of digits retained in stating the numerical value of the
quantity. The digits thus retained, other than zeros to the left of the first
non-zero digit, are called “significant figures.” It is then implied that the
last digit retained is correct and any uncertainty is in the next (unstated)
digit. For example, the statement X = 0.064 implies that X is known
to two significant figures and that its true value is between 0.0635 and
0.0645.4

If zeros are merely used to locate the decimal point, they may give
a misleading impression of the magnitude of the error. For example: if
X = 400±50 but one omits the “±50” then the statement X = 400 would
seem to imply theX = 400±0.5. To avoid such difficulty of interpretation,
one should write numbers using scientific notation. For example, we can
write X = 4.0 × 102 to indicate two significant digits or X = 4.00 × 102

to indicate three significant digits.

4John R.Taylor, An Introduction to Error Analysis, University Science Books, Mill
Valley, CA (1982).
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REMARK ON CALCULATIONS

When performing calculations with numbers which have errors asso-
ciated with them, one must be careful that the final quoted result does
not give a misleading impression of precision, i.e., one must “round off”
the final result by discarding digits which imply an excessive precision.
These guidelines are useful: When adding or subtracting quantities, the
final result should not have more digits after the decimal point (i.e., “dec-
imal places”) than the quantity which has the smallest number of such
digits (since this quantity has the largest error). When multiplying or di-
viding quantities, the final result should not have more significant figures
than the quantity which has the smallest number of significant figures. In
performing all calculations, it is usually safest to retain for every quantity
more than (or all of) the digits which are ultimately needed and then to
discard the excess digits in the final answer. (This avoids the possibility
of introducing additional errors as a result of the calculation itself.)

Using these guidelines you should develop the habit of always ex-
pressing values in correct form, i.e., as a number with an appropriate
number of significant figures multiplied by a unit in simplest form. Thus
you should acquire these capabilities:

Significant Figures and Decimal Places

E-1
What is the number of significant figures and the number of dec-
imal places in each of these values: (a) 1.2, (b) 1.20, (c) 0.012,

(d) 0.0120? (Answer: 114) (Suggestion: [s-5])

Stating Values In Correct Form (Cap. 3)

E-2
Find and state in correct form the values of each of these
expressions: (a) (1.2 × 109meter) + (2.2 × 108meter); (b)

(9meter/sec) − (1.7meter/sec); (c) (2.0meter/sec)/(3.0 × 101 sec); (d)
(2.50× 103meter/sec)× (1.20× 10−6 sec); (e) (0.21meter)× (4.50meter).
(Answer: 103) ([s-7], [p-3])

E-3
Suppose that the distance D′ is the shortest distance between
points on the surfaces of the earth and moon. (See Fig. E-1.)

This distance can be measured using the relation D′ = ct/2, where t is
the travel time of a radar pulse which leaves the earth, is reflected by the
moon, and then returns to the earth, c is the speed of the radar pulse,
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D

D
'

earth moon

+ +

Fig. E-1: The distance D′ between
the nearest points on the earth and
moon, and the distance D between
the centers of the earth and moon.
(This drawing is not to scale.)

and 2 is the counted number of times the radar pulse travels through the
distance D′. (a) Use the typical values c = 3.00× 108meter/sec and t =
2.562 sec to find the value ofD′. (b) The distanceD between the centers of
the earth and moon is related to distance D′ by D = D′+Re+Rm, where
Re = 6×10

6meter is the radius of the earth, and Rm = 1.7×10
6meter is

the radius of the moon. What is the value of D? (c) Suppose we were to
use the distance D′ as an approximation for D, thus neglecting the radii
of the earth and moon. What is the error D −D′ in this procedure? (d)
What is the relative error (D−D′)/D in this procedure? (Answer: 107)
(Suggestion: [p-4])
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SECT.

F RELATIONSHIPS BETWEEN QUANTITIES

The measurement of various quantities allows one to compare them
in detail and thus to discover relationships existing between them. Let us
examine briefly the description of such relationships.

The particular number (including units) assigned to any quantity
is called the “value of this quantity”. This value may also include a
specification of sign, i.e., the value may be positive or negative. (For
example, if x denotes the elevation of some place above sea level, the
value of x is considered positive if this place is above sea level and negative
if this place is below sea level. Thus the elevation of Mount Everest is
x = 8850meter while that of the Dead Sea is x = −395meter.)

The “magnitude of a quantity” x is denoted by |x| and is defined as
the positive number obtained by disregarding any negative sign attached
to this number. (For example, the magnitude of −8meter is 8meter.)
Thus it is important to distinguish carefully between the value and the
magnitude of a quantity.

When comparing the values of two quantities, it is important to pay
proper attention to their signs as well as to their magnitudes. (The ge-
ometrical representation of numbers as points along a line, indicated in
Fig. F-1, may be helpful in visualizing such comparisons.) For example,
if x1 = −6meter and x2 = +3meter, the value of x1 is smaller than the
value of x2, although the magnitude of x1 is larger than the magnitude
of x2 (since 6meter is larger than 3meter).

A quantitative comparison between two numbers is most conveniently
made by calculating their ratio. In particular, the ratio |x1|/|x2| is called
the “relative magnitude” of x1 compared to x2. (For example, a statement
that |x1|/|x2| = 3 implies that the magnitude of x1 is 3 times as large as
that of x2.)

-4 -3 -2 -1 0 1 2 3 4

smaller larger
Fig. F-1: Geometrical representation
of numbers as points along a line.
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FUNCTIONAL RELATIONSHIPS BETWEEN QUANTITIES

A quantity which can assume various possible values is called a “vari-
able.” Most of science is concerned with explaining or predicting what
relationships exist between such variables (e.g., in predicting how the
concentration of a chemical substance changes with time). We shall say
that two variables are “functionally related” (or “mutually dependent”)
if there exists for every value of one of the variables a corresponding value
(or set of values) of the other variable. One may choose to focus special
attention on one of these variables, which is then called the “independent
variable” (or simply the “variable”). The other variable is then called the
“dependent variable” (or simply the “function”) which depends on the
first variable.

It is important to note that the information available about observ-
able quantities is necessarily always of limited precision and accuracy.
Furthermore, it is also necessarily always incomplete (e.g., one can never
measure the temperature of some object at all instants of time, but only
at some selected times). Hence any functional relationship between ob-
servable quantities is always the best estimate describing this relation with
some specified precision for all values of interest.

Various familiar methods are commonly used to describe the rela-
tionship between some variable t and some function x which depends on
this variable. For example, corresponding values of the variable t and
the function x can be displayed in a table (as illustrated in Table F-1).
Alternatively, they can be represented by points in a graph (such as the
points in Fig. F-2). The curve in the graph represents then the best es-
timate of the functional relationship for all values of the variables in a
certain range (e.g., for values of t between 0.3 second and 1.1 second in
Fig. F-2). The graphical representation makes the relationship between
x and t immediately apparent in a readily visualized way, but does not
allow as precise a description as that possible by means of many-digited
numbers in a table.

If the relationship between x and t is sufficiently simple, it may also
be summarized compactly by a formula which specifies explicitly how to
calculate the value of x corresponding to every value of t. (For example,
the best estimate of the functional relationship represented by Table F-1
or the graph in Fig. F-2 can be summarized by the formula x = at − bt2

where a = 8meter/second and b = 5meter/second2.)
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t x
second meter
(±0.02) (±0.05)
0.3 1.91
0.4 2.43
0.5 2.76
0.6 2.97
0.7 3.19
0.8 3.23
0.9 3.10
1.0 3.04

Table F-1: Height x
above the ground of a
ball observed at vari-
ous times t.

x

3.0

2.5

2.0

1.5 0 0.2 0.4 0.6 0.8 1.0

ERRORS

(meter)

t (second)

Fig. F-2: Graph showing the height
x of a ball at various times t.

The discussion of magnitudes and values in this section should enable you
to demonstrate these capabilities:

Finding and Comparing Magnitudes (Cap. 4)

F-1
Determine the magnitudes of each of the quantities in quotes
in this sentence: On a day when the temperature is

“−30 degree Fahrenheit,” a man deposits a check bringing his bank bal-
ance from “−760 dollar” to “760 dollar.” (Answer: 111)

F-2
For each of the following pairs of values, state which value is
larger, and then state which value has the larger magnitude. (a)

A car driving out of Death Valley travels from an elevation of −250 foot to
an elevation of 50 foot. (b) A physician conducting yearly physical exams
notes changes in his patients’ weight (as measured by his office scale).
The change in a man’s weight is 10 pound while the change in his wife’s
weight is −7 pound. (Answer: 104)

F-3
Illustration of relative magnitudes: A physician may become con-
cerned about a weight change when the magnitude of this change

relative to the weight of the person is large. If the man described in
the preceding problem weighs 200 pound and his wife weighs 100 pound,
what is the magnitude of each person’s weight change, relative to his or
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T (°C)

h

20 40 60 80 100 120 140 160

80

40

0

-40

-80

(kilometer)

Fig. F-3: A graph showing the temperature T of the atmo-
sphere at various heights h above the earth’s surface.

her weight. (Answer: 108) (Suggestion: [s-2])

F-4
Review: Using graphs to describe relationships: The following
questions concern the functional relationship described by the

graph in Fig. F-2. (a) What is the algebraic symbol representing the
function (the dependent variable) and that representing the independent
variable? (b) What are the units of each of these variables? (Answer:
112)

F-5
Use the graph in Fig. F-3 to answer these questions: (a) What
is the value of the function T corresponding to the value h =

80 kilometer? (b) For each of the following regions of h, describe T
as h increases by writing that T is increasing, decreasing, constant, or
none of these: values of h between 0 and 10 kilometer, between 20 and
25 kilometer, between 70 and 100 kilometer, between 90 and 100 kilometer.
(Answer: 115)
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SECT.

G SUMMARY

DEFINITIONS

length (Sec. B)

time (Sec. C)

clock; Def. (C-1)

period of a clock; Def. (C-3)

standard; Def. (D-1)

unit; Def. (D-2)

basic standards; Def. (D-4)

basic units; Def. (D-5)

IMPORTANT RESULTS

Condition of unit consistency: rule (D-6)

Both sides of an equation must be expressible in terms of the same
combination of basic units.

USEFUL KNOWLEDGE

operational definitions (Sects. B and C)

SI units (Sec.D)

random and systematic errors (Sec. E)

distinction between value and magnitude (Sec. F)

functional relationships and their description (Sec. F)

NEW CAPABILITIES

You should have acquired this module’s capabilities:

(1) Manipulate units algebraically in order to express the value of any
quantity in terms of any specified set of units. (Sec.D, [p-1])

(2) Determine whether the units of an equation are consistent and to use
a correct equation to find the units of any quantity appearing in the
equation. (Sec.D, [p-2])

(3) Habitually state the value of any quantity with the appropriate num-
ber of significant figures and with units in simplest form. (Sec. E,
[p-3], [p-4])

(4) Compare two signed numbers by stating which has the larger value
and which has the larger magnitude. (Sec. F)
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PRACTICE PROBLEMS

p-1 THE SI UNIT OF SPEED (CAP. 1): When using SI units, we

express speeds using the unit meter/sec. To develop some familiarity
with this unit, let us express some common speeds in terms of meter/sec
and in terms of mile/hour. Use the relations mile = 1600meter and
hour = 3600 second. (a) A person can stride a little less than a meter, so
a typical walking speed is about 2.0meter/sec. Express this speed in terms
of mile/hour. (b) Express a typical automobile speed of 54mile/hour in
terms of meter/sec. (Answer: 1) (Suggestion: Review text problems D-3
and D-4.)

p-2 THE SPEED OF FLUID EJECTED FROM A SYRINGE

(CAP. 2): The speed s with which a fluid emerges from the needle of a
completely filled hypodermic syringe depends on the cross-sectional area
A of the needle, the diameter D and length L of the syringe barrel, and
the time T required to push the plunger. The SI units of these quantities
are: A(meter2), D(meter), L(meter), T ( second). One of the follow-

ing equations correctly relates these quantities: s =
πD2T

4LA
, s =

πLD2

4TA
,

s =
πTL

4D2A
. Which of these equations is correct? (Answer: 3) (Sugges-

tion: Review text problems D-5 and D-6.)

p-3 STATING VALUES IN CORRECT FORM (CAP. 3): Determine

the values of each of these expressions:

(a) (5.00× 105 centimeter3)− (2.5× 104 centimeter3)

(b) (25meter)− (0.9meter)

(c) (2, 000 sec)/(60 sec)

(d) (350mile/hour)× (3 hour)

(e) (0.15)(2.50)

(Answer: 2) (Suggestion: Review text problem E-2.)

p-4 DISTANCE TRAVELED BY A SLOWING CAR (CAP. 3): A

careful driver traveling with a speed s0 = 16meter/sec (about
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36mile/hour) sees a stoplight and gently applies his brakes. Before com-
ing to a stop, his car travels through a distance x = s0t− (1/2)at

2, where
t is the time of 10 second required to stop the car, the integers “1” and “2”
in the fraction “(1/2)” are completely accurate values obtained by count-
ing procedures (see Text Section E), and a has the value 1.6meter/sec2.
(a) What is the distance x traveled by the car? (b) Express x in terms of
the unit mile, where mile = 1.6 × 103meter. (Answer: 4) (Suggestion:
Review text problems E-2 and E-3.)
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SUGGESTIONS

s-1 from Text Problem D-4: You wish to express the value

s = 2πR/T = 2π(18 centimeter)/(3.0× 10−4minute)

in terms of the SI units meter and second. Because meter =
100 centimeter and minute = 60 second, you can replace centimeter in
the previous expression by (meter/100) and minute by (60 second). If
you need further help, review text problem D-3, and read the suggestions
in [s-6].

s-2 from Text Problem F-3: The magnitude of a quantity A relative to
a quantity B is simply the magnitude of A divided by the magnitude of
B. Thus if A = 100 foot and B = −25 foot, the magnitude of A relative
to B is: |100 foot|/| − 25 foot| = +4.

s-3 from Text Problem D-6: The quantities H and R are lengths, and
have the SI unit meter, while π = 3.14 has no unit. Area has the SI unit
meter2 and volume the unit meter3. To identify the correct expressions
for S and V , just find the unit associated with each of these expressions.
Remember that it is meaningless to add (or subtract) two quantities with
different units. Thus if an expression is the sum (or difference) of two
quantities, each of these two quantities must have the same unit. (If you
need further help, review text problem D-5, using the suggestions in [s-4].

s-4 from Text Problem D-5 and Suggestion [s-3]: We can decide which
equation is correct by checking which has consistent units. For example,
in the equation R = AS/N , the left side has the SI unit 1/sec, while the
right side has the unit:

(unit of A)(unit of S)

(unit of N)
=
(meter2)(meter/sec)

1/meter3
= meter6/sec .

Because the units of the equation R = AS/N are not consistent, this
equation cannot be correct.

s-5 from Text Problem E-1 and Suggestion [s-7]: Decimal places: If
a number is not multiplied by a power of 10 (i.e., not in scientific notation),
then the number of decimal places in the value is just the number of digits
(including zeros) which appear to the right of the decimal point. Thus
0.0120 has four decimal places. Significant figures: One easy way to
find the number of significant figures in any value is to count the digits,
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from left to right, beginning with the first non-zero digit. Thus 0.0120 has
three significant figures. Alternatively, you may find it easier to express
0.0120 in scientific notation, 1.20× 10−2. Then the number of significant
figures of the value is just the total number of digits in the decimal number
preceding the power of ten.

s-6 from Text Problem D-3 and Suggestion [s-1]: Part (a): The fol-
lowing sample calculation illustrates a procedure for multiplying or di-
viding values which include units and powers of 10. The calculation is
greatly simplified by grouping separately numbers, powers of 10, and unit
symbols. Remember that unit symbols are manipulated as algebraic sym-
bols. Here “mm” means “millimeter.”

F = nas = (1.0× 109)(5.0× 10−5mm2)(9.0× 10−3mm/min)

= (1.0× 5.0× 9.0)(109 × 10−5 × 10−3) (mm2 × mm/min)

= (45)(101) (mm3/min)

This result should ordinarily then be written in scientific notation.

Part (b): To express the preceding value for F in terms of cen-
timeter and second, you can use the relations provided to substitute
(1.0× 10−1 centimeter) for millimeter and (60 second) for minute. Thus:

F = 4.5× 102
millimeter3minute

= 4.5× 102
(1.0× 10−1 centimeter)3

60 second

=
4.5× 102 × 1.0× 10−3

60

centimeter3

second

This result should be simplified and written in scientific notation.

s-7 from Text Problem E-2: Part (a):: This expression can be written
as

(1.2× 109meter) + (0.22× 109meter) = (1.2 + 0.22)× 109meter .

Find the value of this expression by adding the numbers within the
parenthesis, remembering to round to the appropriate number of dec-
imal places.

-
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There is one problem which commonly arises in calculations like this.
Suppose instead of expressing each term as a multiple of 10 (the largest
power among these terms) we had expressed each as a multiple of 107:

(120× 107meter) + (22× 107meter) = (120 + 22)× 107meter .

It now looks as if all the digits in 120 and 22 are significant and that
the correct sum is 142× 107meter. In fact, the 0 in 120 was not present
in the original number and is not significant. Thus the correct sum is
140×107meter (where the 0 is not significant), the same result as before.
Thus in adding and subtracting, be wary of zeros introduced as you change
powers of ten, and remember that they are not significant.

What is this difference: (2.34× 104)− (5.6× 102)?

-

(Answer: 5) (Note: If you need further help, review your work in text
problem E-1 and read the suggestions in [s-5].) Now: Return to text
problem E-2.
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ANSWERS TO PROBLEMS

1. a. 4.5mile/hour

b. 24meter/sec

2. a. 4.75× 105 centimeter3

b. 24meter

c. 33

d. 1× 103mile

e. 0.37 or 0.38

3. s = (πLD2)/(4TA)

4. a. 80meter or 8.0× 101meter

b. 5.0× 10−2mile

5. 1.4× 109meter, 2.28× 104

101. Al/As = 36/9 = 4

102. s = (63or62.8)meter/sec

103. a. 1.4× 109meter

b. 7meter/sec

c. 6.7× 10−2meter/sec2

d. 3.00× 10−3meter

e. 0.94meter2 or 0.95meter2

(When the final digit is 5, you can round up or down.)

104. larger values: a. 50 foot; b. 10 pound

larger magnitudes: a. | − 250 foot| = 250 foot; b. 10 pound

105. No, because does not specify how to assign a description to the “degree
of warmth or coolness of the object.”

106. R = ASN

107. a. 3.84× 108meter

b. 3.92× 108meter

c. 8× 106meter

d. 0.02 or 2× 10−2

36



MISN-0-403 Answers Supplement an-2

108. man: 5.0 × 10−2; wife: 7 × 10−2. (Check that significant figures are
correct.)

109. a. standard

b. unit

c. standard

d. unit

110. S is (a), V is (c), units of (b) are inconsistent.

111. 30 degree Fahrenheit, 760 dollar, 760 dollar. Note that the unit of a
quantity is always part of its magnitude.

112. a. function: x, variable: t

b. function: meter, variable: second

113. a. 10 second−1, 10meter/sec (These values include only the units
meter and second.)

b. 2meter (1meter ≈ 3 foot)

114. Significant figures: a. 2, b. 3, c. 2, d. 3

Decimal places: a. 1, b. 2, c. 3, d. 4

115. a. −60 degree Centigrade

b. between 0 and 10 kilometer, decreasing;
between 20 and 25 kilometer, constant;
between 70 and 100 kilometer, none of these (because in this region
graph first decreases, then increases);
between 90 and 100 kilometer, increases.

116. a. 4.5× 102millimeter3/minute

b. 7.5× 10−3 centimeter3/sec.
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MODEL EXAM

1. Fluid speed for “needle-free” injection. A “needle-free” injec-
tion device ejects a fluid stream which is sufficiently small in diameter
and large in speed that it can penetrate human skin. The speed S of
such a fluid stream is related by the following equation to the cross-
sectional area A of the fluid stream, the total volume V of the fluid
ejected, and the time T for this fluid to be ejected from the device:

S =
V

AT

Typical values for these quantities are: A = 1.5×10−4 cm2, T = 0.2 sec,
and V = 0.10 cm3.

a. Use the values provided to find the speed S of the fluid ejected by
a needle-free injection device.

b. The fluid speed S for such a device can be as large as the speed
of sound S0 = 3.3 × 10

2meter/sec. Use the relations mile = 1.6 ×
103meter and hour = 3.6×103 sec to express the speed S0 in terms
of the familiar units mile and hour.

2. Comparing altitudes. Altitude is a number with a sign which
indicates distance above or below sea level. The altitude of the lowest
point in Death Valley is −280 foot (i.e., it is 280 foot below sea level).
The nearby town of Sand Dune Junction has an altitude 150 foot.

a. Which of these altitudes has the larger value?

b. Which of these altitudes has the larger magnitude?

Brief Answers:

1. a. S = 3× 103 cm/sec

b. S0 = 7.4× 10
2mile/hour

2. a. 150 foot

b. −280 foot
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