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KINEMATICS OF MOTION
IN THREE DIMENSIONS

by
Ray G. Van Ausdal

1. Introduction

la. Kinematics: Describing Motion Quantitatively. Kinematics
is the study of motion and changes in motion, ignoring forces that may be
causing such changes.! In particular, the job of kinematics is to provide
a mathematical description of the various aspects of motion and also of
the connections between those aspects. Thus we develop a means of pre-
cisely describing an object’s position, displacement, speed, velocity, and
acceleration, and we see how we can obtain any some of these quantities
from others by mathematical manipulation. After mastering kinematics,
we will be ready to add forces to the picture and plunge into the study
of dynamics.

1b. Words Have Special Meanings in Physics. The terms “posi-
tion,” “displacement,” “velocity” and “acceleration” are vector quantities
in physics, and they will be carefully defined and described. In layman’s
usage, these words do not always have the specific, highly precise, mean-
ings that physics assigns to them. The precise physics meanings, not the
layman’s meanings, are used throughout science and technology.

1lc. Vector Quantities With Time Dependence. The motion of an
object can be described by time-varying vectors whose magnitude and/or
direction change as the object moves. This time dependence of the posi-
tion, velocity and acceleration is expressed formally as 7(t), ¥(¢t) and @(t).
We will define the relationships between these quantities and relate each
one of them to the motions of objects.

1d. Describing One- and Two-Dimensional Motion. The de-
scriptors for motion in three dimensions work perfectly well for describing
motion in one or two dimensions.

One-dimensional motion is the simplest to describe, being motion
along a straight line.?2 An example is a car going along on a flat straight

IKinematics (kin e mat’ iks) comes from the Greek word stem “kinema” meaning
“motion.” The word “cinema” comes from the same stem.
2See “Kinematics in One Dimension” (MISN-0-7).
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Figure 1. As an object moves, its displacement is the vector
from its initial position to its current position.

highway, perhaps with its speed increasing and decreasing as time goes
on. Another example is an elevator, travelling up and down and stopping
at various floors.

Two-dimensional motion is much more complicated to describe math-
ematically.? An example is a car traveling along a winding road in a flat
section of the country (to describe the position of the car one need only
specify two numbers, such as the distance it is North and the distance
it is East of some reference point). Another example is a car that has
plunged off a cliff and is following a curving arc toward the ground, far
below (while in the air the car simultaneously goes forward and down,
which constitutes two dimensions).

Three-dimensional motion includes all motion and its descriptions
are usually more complicated than for one- or two-dimensional motion.
However, there are a number of general techniques that are the same for
all three.

2. Changes of Position

2a. Displacement: The Change of the Position Vector. The
displacement (vector) of a particle is defined as the change in the position
vector:

displacement = A7, (1)

3See “Kinematics in Two Dimensions” (MISN-0-8).
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Its magnitude and direction are given by the rules of vector subtraction.*
Figure 1 shows the position vector for the object at two different times.
By applying the definition of the displacement, you can verify that the
displacement has the magnitude and direction indicated. Note that the
displacement is not the distance along the trajectory.

> A car goes 30 miles due East and then 40 miles due North. Show
that its displacement vector is: 50 miles at 37° E of N, written N37°E.

Help: [S-4]

2b. The Average Velocity. The average velocity of an object is the
displacement Ar divided by the time elapsed At:®

N
Vv T AL

(2)

The average velocity could also be described as the average rate of change
of position.

The direction of the average velocity is the same as the direction
of A7, Since A7 is calculated using only initial and final values of the
position over some time interval, v,, will give no information about the
velocity at any particular instant during the time interval. The instanta-
neous velocity, U, might be small, large or varying during the interval.

Caution: At first glance, Eq. (2) might appear to be the equation you
use to calculate the average speed for a trip in your car (distance traveled
divided by the time interval). However, note that the displacement vector
is not the distance the car travelled. In fact, if the car returns to its
starting point (i.e., if 75 = 7), regardless of how far or how fast the car
moved, its average velocity is zero! Of course its average speed would
not be zero: it would be the total distance traveled, then trip mileage
registered on the dash, divided by the elapsed elapsed time, the trip time.

> The car in the previous example spends one hour on each leg of its trip.
Show that its average velocity is: 25 mi/hr, at N37°E. Help: [S-5]

2c. The Instantaneous Velocity. The instantaneous velocity can
be envisioned as the average velocity over a very short time interval. If
the time interval At is sufficiently small, the instantaneous velocity will
not change (much) during that interval, so the average velocity will be

4See “Sums, Differences and Products of Vectors” (MISN-0-2).
5The Appendix relates this expression to the formal (calculus) definition of the
average of a function.
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(about) the same as the velocity at any instant in that interval.® This
imprecise statement can be written mathematically, with precision, as:

instantaneous velocity = ¢ = lim v,, = lim M = f .
At—0 At—0 At dt
That is,
L dr
v = E .

2d. The Magnitude and Direction of v. The instantaneous velocity
is a vector having both magnitude and direction. As At becomes smaller,
the ratio A7/At will approach a finite magnitude and will approach a
direction that is tangent to the trajectory. The magnitude of ¥’ is the
“speed” of the particle. The direction of ¥ is tangent to the trajectory at
every instant.

> A car moves in such a way that the time dependence of the position
vector is:  Help: [S-6]

7(t) = (1.5m) & + (0.50m/s) t 5 + (1.00m/s?) t* 2.

Show that its velocity at ¢ = 5.0 seconds is: (0.50m/s) 4 + (10.0m/s) 2.
Help: [S-6]

3. Changes of Velocity

3a. A Changing Velocity Implies Acceleration. If the velocity
vector of a particle is changing (in magnitude and/or direction), the par-
ticle must be accelerating. In Fig. 2, since the trajectory is curved, the
velocity must certainly be changing direction.

The vector lengths show that the speed increased from ¢; to t5. Over
the time interval At = t5 — t1, the velocity has changed by an amount
AU = vy — v7. Vector subtraction shows the magnitude and direction of
AU (see Fig. 3).

3b. The Average Acceleration. The average acceleration (the av-
erage rate of change of the velocity) of an object is the change in velocity
divided by the time elapsed during the change:

. AT
Aoy = E . (3)

61f the velocity of an object is being directly measured experimentally, the position
will always be measured over finite time intervals, so that the result will always be an
average velocity rather than an instantaneous velocity.
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Figure 2. Velocity vectors at two times along a particle’s
trajectory show that the velocity has changed both its mag-
nitude and direction.

It is a vector in the same direction as Av. The average acceleration gives
no information about the acceleration at any particular instant during
the time interval.

> A car started a trip travelling at 10.0 mi/hr East and ended the trip
two hours later travelling at 20.0 mi/hr North. Use vector subtraction

to show that its average acceleration during the trip was: 11.2mi/hr? at
N27°W. Help: [S-7]

3c. The Instantaneous Acceleration. The instantaneous accelera-
tion can be envisioned as an average acceleration over a very short time
interval. If the time interval At is sufficiently small, the acceleration will
not change (much) during that interval, so the average acceleration will
be (about) the same as the acceleration at any instant in that interval.
This imprecise statement can be written mathematically, with precision,
as:
lim — —.
At—0 At—0 At dt

instantaneous B A Ay dv (@)
acceleration -0 av. -

The direction of the instantaneous acceleration is the same as the direction
of A7 in the limit of At — 0. Equations (3) and (4) can be combined to
give:
dv d>7
b= — = —. 5
CTw T ae (5)

> A car moves such that:

7(t) = (1.5m) & + (0.50m/s) t§ + (1.00m/s%) t* 2.
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Figure 3. Change in velocity is also a vector.

Show that its acceleration at ¢ = 5.0seconds is: 2.0m/s% 2. Help: [S-8]

4. Changes of Acceleration, and More

4a. What Comes Next; Jerk. So far, we have described the position
and its first and second derivatives. What comes next? Higher and higher
derivatives can always be defined and calculated. For example, the third
derivative, the rate of change of the acceleration, is called the “jerk.” It
is sometimes used in engineering problems.

4b. The Importance of Acceleration. The jerk, the third derivative
of position, is used far less often than is acceleration, the second deriva-
tive. The reason is that it is the acceleration of an object that is directly
proportional to the total force acting on the object. Thus when we apply
a known force to an object, we can immediately calculate the acceleration
of the object. Then, if we wish, we can differentiate the acceleration to
get the jerk. The relationship between the applied force and the resulting
acceleration is developed elsewhere.”

Acknowledgments
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7See “Particle Dynamics” (MISN-0-14).
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A: the Time Average

The time average of a quantity R(t) over a given interval of time
At =ty — tq, is defined as:

ta
Rav = Lil R(t) dat .

Ji2 dt
Now, if R(t) is the time rate of change of a quantity Q(¢), that is, if
dQ
r=%
dt
then 0
to
i
av — 1 ;
o dt
or

ta
R :tldQ:Q2_Q1:&
o fttf dt ty —t At

The last expression (above) has been used throughout this module.
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PROBLEM SUPPLEMENT

1. An object moves with a position that varies in time given by 7(t) =
(3.0m/s?)t% + (4.0m/s)tg . Note: If you find that you cannot work
this problem, there is special assistance Help: [S-1].

a. What is its position at one second intervals from t = 0 to t =
7 seconds?

b. Sketch its path from ¢ = 0 to t = 7 seconds.

c. Find 9(t) for the object.

d. Find its velocity at t = 3.0s.

e. Find its velocity at t = 5.0s.

f. Find its average velocity over the interval from 3.0 to 5.0 seconds.

g. Find the displacement over a short time interval At = 0.1 second,
centered around ¢ = 5.0s. Compare the average velocity over this
interval to the instantaneous velocity at ¢ = 5.0s.

2. An object moves with a velocity that varies in time given by ¥(t) =
(6.0m/s*)t 2+ (4.0m/s) g+ (3.0m/s*) t 2 . Note: If you find that you
cannot work this problem, there is special assistance Help: [S-2].

a. Find @(t) for the object.
b. Find its acceleration at ¢t = 3.0s.

Find its acceleration at ¢ = 5.0s.

o

&

Find its average acceleration over the interval from 3.0 to 5.0 sec-
onds.

3. A car sits in front of your house at t = 0. It then goes straight East
at a constant 5.0 x 10! mph for 2.0 hours, straight North at a constant
6.0 x 10* mph for 1.0 hour, then returns along a winding road back to
its original position, arriving at ¢ = 5.0 hours, and is parked. Note: If
you find that you cannot work this problem, there is special assistance

Help: [S-3].

a. What was the displacement of the car from ¢t = 0 to ¢ = 3.0 hours?

b. What was the average velocity of the car over the interval from
t = 3.0 to t = 5.0 hours?

12
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c. What was the velocity of the car at ¢ = 4.0 hours?

d. What was the average velocity of the car over the interval ¢t =0 to
t = 5.0 hours?

e. At what times did the car undergo an acceleration? (Note: Be as
specific as possible, within the limitations of the wording of the
question.)

. The velocity of a particle is given by the expression ¥ = (2.0 m/s?) ¢ &+
(1.0m/s) 4.

a. What is the (instantaneous) acceleration of the particle?

b. What is the average acceleration over the interval 0.0s < ¢t < 4.0s?

. The position of an object is given by 7(t) = (5.0m/s3)t3% +

(2.0m/s)ty + (3.0m) 2.

a. What is the displacement of the object over the interval 0.0s < t <
5.0s7

b. What is the velocity at ¢ = 0.0s?

c¢. What is the velocity at ¢ = 5.0s7

d. What is the average velocity over the interval 0.0s < t < 5.0s?

. A child rides at the edge of a 5.0 m radius merry-go-round that turns

once every 1.0 x 10's. Make a sketch and indicate and calculate the

average velocity of the child over the time interval 5.0s < t < 3.0 x
10t s.

13
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Brief Answers:

1. a. 79 = (0m, Om)
r1 =30maz+4.0my =(3.0m, 4.0m)
ro = (12m, 8m)

rg = (27m, 12m)
rq = (48m, 16 m)
rs = (75m, 20m)
r¢ = (108 m, 24 m)
r7 = (147 m, 28 m).
b.
ym) &
25 T
20 T
15 |
10 |
5
—t—F—1—F—F+—>
25 50 75 100 125 XM
c. U(t) = (6.0m/s?)t2 + (4.0m/s) g
d. ¥(3.0s) = (182 +4.09)m/s
e. ¥(5.0s) = (302 +4.09)m/s
L (T5E+20§)m— (2TE+12))m )
f. Toy = £ 05 _30s =(242+4.09)m/s
g. AF=30mz +04my; oy =30m/si+4.0m/sy.
2. a. d@(t) = (6.0m/s?) 2 + (3.0m/s*)¢? 2
b. (6.0m/s?) % + (27m/s?) 2
c. (6.0m/s?) &+ (75m/s?) 2
d. @ay = (6.0m/s?) & + (49m/s?) 2

PS-3

14
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e o

IS

IS

60mi

100 mi E

58.5mi/hr at S59°W.

Not enough information supplied about the return trip.

.0

The car must have accelerated for a short time at ¢ = 0, again at
t =2.0hr, at t = 3.0hr, and at ¢ = 5.0 hr. Not enough information
is given for the interval ¢ = 3.0hr to ¢t = 5.0 hr to quantitatively
specify the acceleration at any time in that interval. The winding
road implies almost continual acceleration.

@=(2.0m/s?) %

Gay = (2.0m/s?) &
625ma + 1.0 x 10! myg
(2.0m/s) g

(375m/s) & + (2.0m/s) g
(125m/s) & + (2.0m/s) g

15
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f—— position at
t=0,10,20,30s

displacement over
interval 5 <t <305

L position at

t=5,15,255

Uay = (ATF)/(AL)
= (10m)/(25s), in dir. of A¥
= 0.40m/s, in dir. of A7,

16
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SPECIAL ASSISTANCE SUPPLEMENT

MISN-0-37 AS-2

S-1 (from PS-problem 1)
a. Example:  #(2s) = (3)(2s)?’m/s*% +4(2s)m/sy
= 12mz+8my
= (12m,8m).

b. Plot the coordinates from part (a) as data on an z-y graph. You
might prefer to use different scales on the two axes.

c. O(t) =dr/dt = (d/dt) [(3m/s*)t?* & + (4m/s)t]].
The units and unit vectors are constant in time so:
F(t) = (3m/s? &) (d/dt) t* + (4m/s ) (d/dt)t.

d. Evaluate 9(t) at t = 3s.
e. Evaluate ¥(t) at t = 5.

f. Use the definition of ¥,y, Eq. (5).
A7 =7(5s) —#(3s8); At=58—3s=2s.
Caution: Note that ¥, is not defined as the average of the initial
and final velocities. Rather, it is the velocity averaged over the entire
time interval.

g. The time interval is 4.95s < t < 5.05s. Evaluate 7(t) at these two
times and subtract to get the displacement vector. Divide A7 by At

S-3 (from PS-problem 3)

a. You must first define a coordinate system for this problem. An easy
choice has = East and y North, with the origin at the spot “in front
of your house.” That is, the initial position is 7y = 0. Then A7 =
o — 71 = 9. What is the vector position 75 at ¢ = 3 hours?

b. The average velocity is the displacement divided by the time. Over
the interval from 3.0 to 5.0 hours, the car returns, so that its displace-
ment is exactly equal and opposite its 0.0 — 3.0 hour displacement.

c. During the 3.0 to 5.0 hour interval, the car could slow, turn, stop,
speed, etc. The average velocity over this time interval gives no
information about the velocity at some instant in the interval.

d. For this time interval, the displacement vector is zero.

e. The car accelerates whenever its velocity changes magnitude and/or
direction. At ¢t = 0.0, it must spend a short (unspecified) time accel-
erating to 50 mph. At ¢t = 2.0 hr, it changes both the magnitude and
direction of its velocity. What does the winding road imply about
velocity changes?

to get Uy
S-2 (from PS-problem 2)
~ d . . L
a. at) = Ev(t). See [S-6] for hints for differentiating vectors.

b. Evaluate d(t) at t = 3s.
c. Evaluate d(t) at t = 5s.

d. Use the definition of @,y, Equation (7).

(from TX-2a)

The path of the car is shown in the sketch. You draw in the
displacement vector: it begins at “Start” and ends at “Finish.”

N A

Finish

40 mi

30mi E

3
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(from TX-2b))

The average velocity is the displacement given in [S-4] divided by the
time (a total of two hours).

MISN-0-37

AS-4

(from TX-2d)

o(t) = (d/dt) 7= (d/dt) [(1.5m) &+ (0.50m/s)t § + (1.00m/s?)* 2] .
The unit vectors &, ¢y, and Z are constant in time, in both magnitude
and direction. That is, di/dt = dg/dt = dz/dt = 0.

Thus:

d/dt (1.5m) & =0,

d/dt(2.0m/s)tgy) =2.0m/s g, and

d/dt(1.00m/s?)t? 2 = (2.00m/s?) ¢ 2.

S-8

S

=1

ST

(from from TX-3¢c)

@
dt
d . . 2\ ,2 2
o [(1.5m) & + (0.50m/s) t § + (1.00m/s*) t* £]
(0.50m/s) g + (2.00m/s%)t 2

dv

pri (2.0m/s?) 2.

S-7 (from TX-3b)

AT
At
Vo — U1
At
22.4mi/hr
2 hr
= 11.2mi/hr?.

The direction is found from the figure:

19
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MODEL EXAM

1. See Output Skills K1-K5 in this modules’s ID Sheet. The exam may
have one or more of these skills, or none.

2. The velocity of a particle is given by the expression ¥ = (2.0 m/s?)t &+
(1.0m/s) g.

a. What is the (instantaneous) acceleration of the particle?

b. What is the average acceleration over the interval 0.0s < ¢t < 4.0s?

3. The position of an object is given by #(t) = (5.0m/s3)t3% +
(2.0m/s)ty + (3.0m) 2.

a. What is the displacement of the object over the interval 0.0s < t <
5.0s7

b. What is the velocity at ¢ = 0.0s?
c. What is the velocity at ¢ = 5.0s7
d. What is the average velocity over the interval 0.0s < t < 5.0s?

4. A child rides at the edge of a 5.0 m radius merry-go-round that turns
once every 1.0 x 10's. Make a sketch and indicate and calculate the
average velocity of the child over the time interval 5.0s < t < 3.0 x
10" s.

Brief Answers:

1. See this module’s text.
2. See this module’s Problem Supplement, problem 4.
3. See this module’s Problem Supplement, problem 5.

4. See this module’s Problem Supplement, problem 6.
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