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ROTATIONAL MOTION OF A RIGID BODY

by

J. S.Kovacs

1. Introduction

Newton’s second law, ~F = m~a, where ~F is the resultant of the ex-
ternal forces exerted), when applied to an object that has finite dimen-
sion (i.e., not a point object) determines the acceleration of the center of
mass of that object. Successive integrations then yield the results usually
sought after: the description of the motion of the center of mass, its posi-
tion given as a function of time. Such an object’s motion, however, may
involve more than just the motion of its center of mass. The various parts
of the object may move relative to the center of mass. In this unit the ro-
tations of a rigid body as a whole about some fixed axis are investigated.
Rotation about some axis through the center of mass, will constitute the
complete description of the motion of such objects.

2. About a Principal Axis, Fixed In Space

When an object rotates about one of its principal axes the angular
momentum vector and the angular velocity vector are parallel1 and related
to one another by a constant of proportionality which is determined by
the distribution of mass of the object with respect to the axis.2 The
constant is the moment of inertia with respect to this principal axis:

~L = I~ω (1)

Unless there are external torques disturbing this rotating object (such as
perhaps the torque due to friction which may also slow the rotating object
to a stop), the vector ~L remains constant in magnitude and direction:
Angular momentum is conserved. When there are external torques, the
net external torque can be related to the resulting time rate of change of

1See “Calculation of Moments of Inertia, Principal Axes” (MISN-0-35), where the
distinction is made between the rotation of an object about any axis and the rotation
about one of the principal axes.

2It actually is the second moment of the distribution, so-called because each mass
element is weighted by the square of its distance from the axis of rotation in determining
its contribution to the total I: I =

∫

r2dm.
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angular momentum,

~τ =
d~L

dt
, (2)

as can be derived directly from Newton’s laws.3 The vector ~τ , in general,
need not be in the same direction as ~L, so that d~L/dt may be in a different

direction than ~L. This results in an ~L which changes its direction with
time, as illustrated by the gyroscope.

If, however, the axis of rotation happens to be fixed so that the ex-
ternal torque is also along the same axis as ~L and ~ω, then d~L/dt is also

along this direction and the change in ~L is in magnitude only. Further-
more, with the axis fixed (in space as well as in the body), the moment
of inertia remains constant, so that we have

~τ =
d~L

dt
= I

d~ω

dt
= I~α (3)

where ~α, the angular acceleration vector, is along the same axis as all the
other vectors.4 With these restrictions, there is a close parallel between
~F = M~a and ~τ = I~α. The first of these relates the net external force

on an object to the resulting acceleration of the center of mass of that
object. ( ~F is the “cause” that produces the “effect”: the acceleration
of the object’s center of mass.) The second one, ~τ = I~α, relates the
external torque to the resulting angular acceleration. The quantity I
plays the analogous role in rotational motion to the role that M plays in
translational motion.5

As an illustration, consider the rotation of the earth. The direction
of the axis of rotation is not quite fixed in space. However, for most con-
siderations it may be viewed as fixed. Assuming this, how much external
torque must be applied for one day to increase the earth’s rotation such
that the length of the day is decreased to 23 hours? Applying the above
relation, Eq. (3), and assuming that a constant torque is applied for one
day, the answer is 8.52 × 1028 newton-meters (assuming the earth to be

3See “Torque and Angular Momentum in Circular Motion” (MISN-0-34) for the
basis of this relationship.

4Even if the axis of rotation is not a principal axis, as long as it is fixed and as long
as the net external torque is along this axis, an equation related to the equation derived
below is applicable. That is, Eq. (3) applied only to the along-the-axis components of
the vector quantities appearing in it would be correct even if the axis is not a principal
one.

5Cases where translational and rotational motion occur simultaneously are dealt
with in “Translational Plus Rotational Motion of a Rigid Body” (MISN-0-43).
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a sphere of mass 5.98× 1024 kilograms and of radius 6.37× 106 meters).
If this torque were produced by a tangential force applied at the equator
the magnitude of the force would be 1.34× 1022 newtons.

3. About a Fixed Axis Not Through CM

Consider the motion of a baseball bat in the hand of a batter. Ne-
glecting for the time the important effect of the motion of the batter’s
arms and his body in general, the motion of his bat can be viewed ideally
as a rotation about an axis near the thin end of the bat, perpendicular to
the bat. This rotation is clearly not about an axis through the center of
mass of the bat, which is considerably nearer to the “fat end” of the bat.

If such a bat were held stationary in the conventional position by
a batter, before the pitched ball struck it, the torque produced by the
impact of the ball would tend to rotate the bat. (If the bat were loosely
held, the ball would “knock the bat out of the batter’s hands.”) If this
torque were known, the angular acceleration of the bat’s rotation could be
determined by the method described in Section 2. The batter in attempt-
ing to provide a stationary pivot around which the bat rotates would have
to exert a force to keep the bat from being knocked from his hands. How
much force must he exert? The answer comes from the direct application
of Newton’s law to the motion of the center of mass of the bat. That
is, the instantaneous acceleration of the center of mass of the object is

determined by the net external force acting on it at that instant.

Consider the situation illustrated in Fig. 1. The ball is exerting a force
F at the point of impact A. With the point B held fixed, the bat tends
to rotate around point B with an angular acceleration determined by the
torque about B produced by F . From this known angular acceleration,
the tangential acceleration6 of any point on the bat can be determined.
In particular, the instantaneous linear acceleration of the center of mass
can be determined, which in turn determines the net force on the bat.
Knowledge of the force of impact then determines the force with which
the bat must be held.7

6See “Torque and Angular Acceleration for Rigid Planar Objects: Flywheels”
(MISN-0-33) for the relationship between angular acceleration and linear accelera-
tion when the path of the motion is circular (in which case the linear acceleration is
tangent to the circle, hence the alternative term tangential acceleration.

7The reaction force to this force, namely the force exerted on the batter’s hand by
the bat, is responsible for the familiar “sting” felt by batters when the bat is not held
in the proper place relative to the point of impact with the ball.

7

MISN-0-36 4

X

B Acenter of mass

Direction of Instantaneous

acceleration of the center

of mass

Fp

F

Figure 1. A bat held stationary at point B must have a
force Fp exerted (at the instant of impact) in the direction
shown if the impact force F exerted at point A will result in
a pure rotation of the bat about a fixed axis through B.

With the point of impact A located a distance A from the center of
mass and the bat held fixed at B a distance B from the center of mass,
the force that the batter must exert on the bat, Fp (shown in Figure 1
directed opposite to F ) is,

Fp =

[

K2 −AB

K2 +B2

]

F, (4)

where K is the radius of gyration of the bat relative to an axis through
the center of mass. This indicated that Fp can be zero: the batter need
not exert a force on the bat and conversely, the bat won’t exert a force on
his hand, if the point of impact and the point where the bat is held are
such that the product of their distances from the center of mass equals
the square of the radius of gyration relative to the center of mass.

It should be noted that this above result, Eq. (4) with Fp directed as
shown in Figure 1, represents the total force needed at the axis of rotation
only if the object (the bat) has not acquired any angular velocity— before
the bat has rotated appreciably. When the bat has begun to rotate, an
additional force must be provided to keep the point B stationary. This
is the centripetal force,8 MBω2, directed to the left in Figure 1 along
the line from the point B to the center of mass. This is just the force

8See MISN-0-17 for the development of and illustration of centripetal force.
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that must be provided to keep an object (the center of mass in this case)
moving in a circular path.

4. Rotational Kinetic Energy

The kinetic energy of a point-like mass moving with velocity v is given

by the expression
1

2
Mv2. This is appropriate even when the point-like

mass is a part of an extended object which is rotating. With the object
rotating about some axis with angular velocity ω, the kinetic energy of a
point-like mass located a distance R from the axis is,

Ek =
1

2
M(ωR)2 =

1

2
(MR2)ω2. (5)

The total kinetic energy of the extended object as a whole is just the sum
of a large number of such terms, one for each of the point-like masses that
make up the object. This sum for a continuous mass distribution must
be expressed as an integral over all elements of the object. However,
in this integral or sum, ω has the same value for each element of mass,
irrespective of its mass and distance from the axes. The integral is then
only over the “MR2” contributions of the object. But this is the moment
of inertia of the object relative to the axis about which the rotation occurs:

I =
∑

i

MiR
2

i →
∫

R2dM (for continuous distributions). (6)

Thus, the total rotational kinetic energy of an object undergoing rotation
about some fixed axis is:

Ek(rotation) =
1

2
Iω2. (7)

If the axis is not fixed, then the velocity of each point-like mass is not
related to ω in the simple way that it is for the case of pure rotation. The
consequence of this is that the total kinetic energy of the object includes
terms in addition to what there is in Eq. (7) above. These additional
terms are easily interpretable, however.

As an example, consider a spherical ball rolling without slipping on
a flat surface. A bit of reflection will verify that because the ball is not
slipping, if its center is moving forward with a speed V , then the angular
velocity it has about an axis through its center is ω = V/R where R is the
radius of the ball. (If it slips ω will have a value greater than this.) The
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ball has rotational kinetic energy given by Eq. (7) above. It would have
this rotational kinetic energy even if it were spinning in place (if it spun
with the same angular velocity, ω). Furthermore, if the ball didn’t rotate
at all while it slid along the horizontal surface with speed V , its kinetic
energy would be given by the usual expression for the translational kinetic
energy of an object: MV 2/2. When these two motions are combined, as in
the case of rolling without slipping, it should be no surprise that the total
kinetic energy is the combined kinetic energy of each of these separate
cases of motion:

Ek =
1

2
Iω2 +

1

2
MV 2,

Where the first term is the kinetic energy of rotation about an axis
through the center of mass while the second term is the kinetic energy
associated with the translational motion of the center of mass. The effect
of this result is illustrated by considering the following demonstration: If
a sphere of mass M is placed on an:incline which is such that the mass
starts out at rest at a vertical. height H above the bottom of the incline,
then if this mass slid (without rolling and without frictional loss) down
the incline, it would have a speed

√
2 gH when it got to the bottom. This

result is immediately obtained by observing that the potential energy the
sphere had at the top of the incline is converted to kinetic at the bottom.
If, however, this sphere rolled without slipping down the incline, the to-
tal energy it would acquire at the bottom would be the same as in the
slipping case, but it would be divided into rotational and translational
kinetic energy. Consequently, its translational velocity would be less than
in the pure sliding case. In fact, its speed at the bottom of this incline
would be

√

(10/7) gH in the case of rolling.
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LOCAL GUIDE

The readings for this unit are on reserve for you in the Physics-Astronomy
Library, Room 230 in the Physics-Astronomy Building. Ask for them as
“The readings for CBI Unit 36.” Do not ask for them by book title.
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PROBLEM SUPPLEMENT

1. Perform the calculation referred to at the end of Sect. 2 to determine
the torque and force needed to increase the length of the day by 1 hr.
when this torque and force are applied for 24 hr.

2. In AF9 answer Questions 6 and 7 (p. 228). Work Problems 11.7(a),
11.9 (assume all of the wheel’s mass is at radius 0.60m), 11.11, 11.17
(part a), 11.21, and 11.22.

Answers:

11.7(a): 14.9 rpm

11.22: a = 7.62m/s (not 7.4m/s).

3. Referring to Fig. 1 in this module’s text, find the force that must be
exerted by the pivot on the bat at the instant the bat is struck at A.
[Answer: Eq.(4) of the text.]

4. If the force F remains constant and perpendicular to the bat, find the
resultant force on the bat at the pivot when the bat’s angular speed is
ω. [Answer: the resultant of Fp above and the centripetal force.]

5. Verify that the speed with which a sphere, rolling without slip-
ping, leaves an incline (starting at rest from a vertical height H) is
√

(10/7)gH .

6. In AF work Problems 11.13, 11.17 (b and c), and 11.24.

Answers:

11.24: (a) 120.05 J; (b) Tension in part of string attached to m is 35.2,
to part attached to m′ is 32.3N.

9M.Alonso and E. J. Finn, Physics, Addison-Wesley, Reading (1970), Sect. 11.4,
pp. 217-220. See this module’s Local Guide for access to this reference.
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Detailed Problems

1.

f
F
`R

L

P

On a horizontal frictionless surface, a uniform rod of mass M and
length L is pinned and held fixed at one end at point P , free to rotate
in a horizontal plane about point P . A force, ~F , constant in magnitude,
is exerted on the rod such that the force maintains a constant angle, φ,
with the rod. The force acts at distance R from P (see sketch). Under
the action of this force the rod, starting from rest, begins to rotate.

a. Does it rotate with constant angular velocity? [K]

b. Why, or why not? [T]

c. What is the moment of inertia of the rod with respect to the axis
through p (you may look this up in any text)? [F]

d. Relative to an axis through point P , perpendicular to the plane of
the paper, find the external torque acting on the rod. [N]

e. Find the angular acceleration of the rod. [C]

f. Is this angular acceleration constant? [L]

g. If the rod started at rest at t = 0, find how much time it takes to
rotate through one complete revolution. [R]

h. What is its angular speed at time t = T , where T is the time for
one complete revolution in (g) above? [V]

i. What is its kinetic energy at time t = T . [O]

j. Use the Work-Energy Relation to find how much work was done by
the external force F during the interval from t = O to t = T . [H]
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k. Evaluate ~F ·d~r to find the work done by ~F during the interval from
t = O to t = T and compare with answer to (j). [B]

l. Draw a free-body diagram showing all of the forces acting on the
rod at some instant during its motion. Don’t neglect the force
the pin exerts on the rod. Resolve these forces into components
perpendicular to the rod and those tangential. [W]

m. At the instant that the rod has made one complete revolution what
is the tangential acceleration of the center of mass of the rod? [E]

n. At that time T what is the centripetal acceleration of the center of
mass? [J]

o. Write down that component of the expression of Newton’s 2nd law
that will enable you to determine the perpendicular component of
the force the pin exerts on the rod. [U]

p. Determine this component of the force. [P]

q. Write that component of the expression of Newton’s 2nd law that
will enable you to determine the parallel to the rod component of
the force the pin exerts on the rod. [A]

r. Determine this component of the force. [I]

2.

R

m1

m2

M

In the diagram above, the rope moves over the pulley wheel without
slipping, turning the wheel. The frictional force between m1 and the
surface is f = 12N. The wheel has radius R = 0.20m, radius of gyra-
tion K = 0.15m and mass M = 20 kg. Also: m1 = 5kg, m2 = 40 kg.
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Find the acceleration of mass m2, [M], the angular acceleration of the
wheel, [D], the tension in the part of the cord attached to m1, [Q], and
the tension in that part of the cord attached to m2 [G].

3. If the wheel of Problem 2 is on frictionless bearings so no frictional
energy is lost in rotation of the wheel, use the Work-Energy Principle
to find the speed ofm2 after it has fallen (starting from rest) a distance
of d = 2 meters from its starting point. [S]

Brief Answers::

A. F ′ − F cosφ = (ML/2) · (12FR sinφ)/(ML2).

B. Same as answer H.

C. [(3FR)/(ML2)] sinφ.

D. 33.8/ sec2.

E. [(3FR)/(2ML)] sinφ.

F. ML2/3.

G. 121.8N.

H. It’s equal to the change in kinetic energy: 2πFR sinφ.

I. F cosφ = (6πFR/L) sinφ.

J. [(6π)/(ML)]FR sinφ.

K. No.

L. Yes.

M. a =
m2g − f

m1 +m2 +
MK2

R2

= 6.76m/s2.

N. FR sinφ.

O. 2πFR sinφ.

P. F sinφ

(

1− 3R sinφ

2L

)

.
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Q. 45.8N.

R.
√

(4π/3) · (ML2)/(RF sinφ).

S. v =







2d(f +m2g)

m1 +m2 +
MK2

R2







1/2

= 5.36m/s.

T. There is a net external torque, causing an angular acceleration.

U. F sinφ− F =M

(

3FR

2ML
sinφ

)

.

V.

[

12FR sinφ

ML2

]1/2

.

W.

f
F

F'
f

F' and f are components

of force exterted on the

rod by the Pin

16


