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SCHRÖDINGER EQUATION BOUND STATES

by

P. S. Signell
Michigan State University

1. Introduction and Overview

1a. Finding All Bound States Can Be Important. It is all very
well to be able to use numerical techniques to find some of the bound
states of a particular potential, but there are occasions where one would
like to be sure of finding all of a potential energy function’s bound states.
For example, it can easily happen that adjustment of a potential-function
parameter, in order to match the energy of a real-life bound state, results
in a large energy shift for another observed bound state. Another example
is the case where nature shows only one bound state for a particular
system, yet a presumably applicable potential function produces two or
more bound states. Thus one may need to locate all bound states of any
given potential in order to make a complete comparison to data.

1b. Bound State: Increasing Exponential is Missing. Bound
states occur only at isolated energy values because those are the only
values where an exponentially-increasing part of the solution vanishes.
Except at such energies Schrödinger equation solutions become rising ex-
ponentials at large radius as shown in Figure 1. For such cases the solution
cannot be normalized to unity. That is, the condition that the bound

E = 1.1 E ; u ` e
0

+Kr

E = 1.0 E ; u ` e
0

-Kr

E = 0.9 E ; u ` -e
0

+Kr

u

r

Figure 1. Hydrogen atom wave functins for 3 energies near
the ground state energy E0. A non-linear scale has been
used.
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u0

u

Ep

r

Ep =/ 0

u =/ uÞ 0

Ep = 0

u = uÞ 0 Figure 2. Wave function inside
and outside a potential.

particle has 100% probability of being found somewhere in all of space,

1.00 =

∫ ∞

0

|uBS(r)|2dr ,

cannot be satisfied if u has a large-radius behavior like either (+eKr) or
(−eKr) because then the integral will always diverge (be infinite). The
problem is to find all of the discrete energies at which the exponentially-
increasing part of the solution vanishes.

1c. The “Outside” Solution. In any region “outside” a potential,
meaning in a region where the potential energy Ep is zero or negligibly
small, the solution to the zero-angular-momentum Schrödinger equation
is:

u0 = AeKr +Be−Kr ; Help: [S-1]

where A and B are functions of K but not of radius. This solution can
be easily verified by direct substitution into a potential-less Schrödinger
equation, along with the identification of K:

E = −h̄2K2/2m ; Help: [S-1]

Notice that, if A is not zero, the A term will always win out over the B
term for large enough radius (see Fig. 2). That is why the solution always
increases exponentially for large radius - except at those precise values of
K, hence of energy, where A(K) is precisely zero.

1d. Findinq the Zeros of A(K). The problem of finding the bound
state energies reduces to finding the zeros of A, which is easily accom-
plished by plotting A vs K on a graph. A curve is obtained by numer-
ically solving the Schrödinger equation at each of a number of K-values

6
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K

A

º Bound-State K's at zeros of A

Figure 3. Locating the zeros of the exponentially-rising
solution.

(energies). Then A is determined at each energy from the solution values
at two different radii outside the potential:

u1 ≡ u(r1) = AeKr1 +Be−Kr1

u2 ≡ u(r2) = AeKr2 +Be−Kr2
(1)

These two equations in two unknowns can be easily solved for A.
Help: [S-2]

1e. An Iterative Homing Procedure. Once the bound state ener-
gies have been fairly well delineated, an iterative automatic homing pro-
cedure can be used to find precision values for both the energy and wave
function (solution “u”). There are a number of such procedures.1

2. Preparing for Numerical Solution

2a. Simplifying the Schrödinger Equation. Prior to numerical
work we can simplify the Schrödinger equation by scaling its energies
relative to a convenient radius scale. That is, we can first choose an
appropriate unit of radius for graph plotting or other purposes, such as
Bohr radius, fm, or whatever, then use a new measure of radius relative
to those units:

R ≡ r/r0.

1See, for example, “An Automatic Variational Method for Schrödinger-Equation
Bound States” (MISN-0-265, UC) and “Automatic Difference-Equation Methods for
Schrödinger Bound States” (MISN-0-245, UC).
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To simplify the Schrödinger equation we must choose an energy scale E0,
defined in terms of r0 by

E0 ≡ h̄2/(2mr2
0) , (2)

and use new measures of energy which are relative to those units:

ε ≡ E/E0 ; εp ≡ Ep/E0 .

Then the Schrödinger equation can be written simply:

d2u/dR2 = [εp(R)− ε]u . Help: [S-3] (3)

This form is easier to use in numerical calculations because it has fewer
symbols to be programmed. Its “outside” (εp = 0) solution is:

u0 = AeκR +Be−κR ; κ ≡
√
−ε . Help: [S-4] (4)

2b. Modifications for an Energy Shift. The Schrödinger equation
depends only on the difference of energies [see Eq. (3) above], so a con-
stant can be added to each energy without altering the solution. This is
sometimes desirable for making correspondence with other calculations.
For example, the harmonic oscillator potential must usually be shifted in
energy in order to match its minimum to that of a particular potential it
is being used to approximate.2 In any case, with an energy shift εc we
can define new energy variables:

ε′p ≡ εp + εc ; ε′ ≡ ε+ εc .

Then Eqs. (3) and (4) become:

d2u/dR2 = [ε′p(R)− ε′]u , (5)

u0 = Aeκ
′R +Be−κ

′R ; κ′ ≡
√

εc − ε′ . Help: [S-5] (6)

2c. Example: Cut-Off Hydrogen Atom Potential. An easily
checked result can be obtained for the hydrogen atom, but with its
Coulomb potential set equal to zero beyond some “cut-of” radius rc as
shown in Fig. 4. Then we only need go a short distance beyond rc in order
to pick up u(rl) and u(r2). The value of rc can be chosen as small as 3
Bohr radii tor the ground state, while at least 7 Bohr radii of potential

2See “Quantized Small Oscillation Technique” (MISN-0-264, UC)
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Figure 4. A cut-off potential.

is needed to produce the first excited state. A convenient radial unit to
use3 is the Bohr radius:

r0 ≡ h̄c/(αmc2) ' 0.53nm . (7)

Substituting Eq. (7) into Eq. (2) the energy-scale parameter is:

E0 ≡ α2mc2/2 . (8)

This is just the negative of the atom’s ground state energy! Thus the
scaled potential energy function is:

ep(R) = −2/R .

2d. Cut-Off Radial Oscillator. A widely applicable and easily
checked potential energy function is that of the radial harmonic oscil-

3See Sect. 2a

Ep

0
r

Figure 5. The cut-off oscillator well.
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Ep

0
rrc

Figure 6. The well of Fig. 5 shifted
upward by krc/2.

lator:4

Ep(r) = kr2/2 . (9)

Its energy levels are given by :

En = hν0(2n+
3

2
) : n = 0, 1, 2, 3, . . . ; 2πν0 ≡

√

k/m .

In quantum phenomena the potential is usually better represented by the
form (see Fig. 5):

r ≤ rc : Ep(r) =
1

2
k(r2 − r2

c ) ,

r ≥ rc : Ep(r) = 0 .

However, it is customary to quote harmonic oscillator solutions in
the form of Eq. (9) and then let them be subsequently adjusted to the re-
quirements of particular applications. We accomodate to that convention
by shifting our energies upward by krc/2 (see Fig. 6). Our new energies
are:

r ≤ rc : E′p = kr2/2 ,

r ≥ rc : E′p = kr2
c/2 .

We then define scale factors:5

r0 ≡ (h̄/2πν0m)1/2 ,

E0 ≡ h̄2/2mr2
0 = hν0/2 .

4See: “Simple Harmonic Motion II” (MISN-0-26), “Small Oscillation Technique”
(MISN-0-28), and “Quantized Small Oscillation Technique” (MISN-0-264).

5See Sect. 2a
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Ep

0

r
Figure 7. Numerical solution
for the wave function.

and obtain a simplified Schrödinger equation:

R ≤ Rc : d2U/dR2 = (R2 − ε′)u ,

R ≥ Rc : d2U/dR2 = (R2
c − ε′)u ,

where:

R ≡ r/r0 ,

ε′ ≡ E′/E0 .

2e. Dealing With Numerical Potentials. Sometimes the potential
energy function is known only at a discrete number of radial points (see
Fig. 7), whether from experiment or theory, so interpolative techniques
must be used in order to solve the Schrödinger equation. One method is
to fit all of the potential energy values with a combination of phenomeno-
logical functions. After adjustment of the functions’ parameters for a
sufficiently precise fit, the resulting potential energy function can be used
directly in the computer technique normally used with formal potential
energy functions. Another method is to use a standard computer “Table
Look-Up” subroutine with, say, automatic quadratic interpolation. Such
a subroutine must be given a table of potential energy values and a table
of corresponding radii. Upon sending the routine a radius, it fits the three
nearest-radius values with a quadratic, then evaluates the quadratic at the
desired radius. Finally, some investigators prefer to fit different regions
of the potential energy numbers with separate functions and then branch
appropriately in the various regions of the numerical solution.

3. Procedure for Numerical Solution

3a. Finding the “Outside” Wave Function. In general, the wave
function outside the potential is found numerically by use of a computa-
tional algorithm. A common example of such an algorithm, specifically

11
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rrc

y

cu

y = cu

Figure 8. Joining the
“inside” and “outside” wave
functions.

applicable to the present case, is given elsewhere.6 A saving in computa-
tion time can be gained in the present case where we only need the wave
function outside the potential. In that region the algorithm’s primary
solution function y(R) is simply proportional to the u(R) we seek (see
Fig. 8):

“outside” : y(R) = c u(R)

Now, any constant times a solution is also a solution so y itself is a solution
in the outside region. Thus we merely solve for y and call its values, at two
outside radii, u1 and u2. We have made available a computer programs
to automatically get y at two such points.7

3b. Finding κ for e±κR. No matter what potential has been used,
one must calculate A by comparing the “outside” solution y to:

y0(R) = AeκR +Be−κR .

This means finding y at two outside net-points and using the two equa-
tions to eliminate B and solve for A. The values of κ can be easily
determined by putting the above form into the Schrödinger equation for
u0. The result is:

κ =
√

εp(outside)− ε , Help: [S-4]

where εp(outside) is usually zero for negative ε’s and a positive constant
for positive ones.8

6See “Numberical Demonstration of Energy Quanitzation for Atomic Hydrogen”
(MISN-0-245, UC).

7See Appendix A
8See Sect. 2.

12



MISN-0-253 9

3c. Finding A for Each Energy. Values of y at two outside radii are
used to find A:

A =
y2e

−κR1 − y1e
−κR2

eκ(R2−R1) − e−κ(R2−R1)
, Help: [S-2]

One can use this formula with a pre-made program (see Appendix A), for a
computer, or perform the calculation manually. Repeating this calculation
for a number of different ε values, the A vs. ε curve can be plotted and
sketched-in smoothly. To obtain high accuracy the region around a zero
of A can be blown up, in the photographic sense, until the A points are
highly linear. Graphical or numerical interpolation is then very accurate
Help: [S-6] Help: [S-7] . Finally, the bound state energies can be put
back into the Schrödinger Equation program and the wave function tails
examined visually as a check.

NOTE: Be sure to include only one FUNCTION ep, that for the ap-
propriate potential, in your program at a time.

3d. Precision Energies and Wave Functions. Once the bound
states of a given potential have been located, we recommend switching
to methods which automatically “home in on” solutions to produce pre-
cise energies and precise and/or functional representations of the wave
functions. Such methods are given elsewhere.9

Acknowledgments

I would like to thank Brian Sharpee for formatting this module and
for writing the BASIC program that is included. Preparation of this
module was supported in part by the National Science Foundation, Di-
vision of Science Education Development and Research, through Grant
#SED 74-20088 to Michigan State University.

A. Qbasic to Calculate Bound States

’PROGRAM BOUND 9/28/99

DECLARE SUB NPUT ()
DECLARE SUB INIT ()

9See “An Automatic Variational Method for Schrödinger-Equation Bound States”
(MISN-0-265) and “Automatic Difference-Equation Methods for Schrödinger-Equation
Bound States” (MISN-0-245).
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DECLARE SUB INITIAL ()
DECLARE SUB GETA ()
DECLARE SUB TPUT ()
DECLARE SUB ITERATE ()

COMMON SHARED delta!, rc!, emin!, emax!, eino%
COMMON SHARED e!
COMMON SHARED de!, nept%
COMMON SHARED yi!, ypi!, ri!, rs!
COMMON SHARED yf!, ypf!, rf!, rpf!, epf!
COMMON SHARED a!

DECLARE FUNCTION ep! (ep1!, ep2!)
DECLARE FUNCTION yplus! (yp1!, yp2!, yp3!, yp4!, yp5!)

’Begin Main Program

CALL NPUT
CALL INIT

FOR ne% = 1 TO nept% STEP 1
’ e! = The Total Energy at the Interval Points
e! = emin! + (ne% − 1) ∗ de!
CALL INITIAL
CALL ITERATE
CALL GETA

CALL TPUT
NEXT ne%

’End Main Program

SUB NPUT

’ delta! = Radial Stepping Increment
’ rc! = Cut−Off Radius
’ emin! = Minimum Energy Desired
’ emax! = Maximum Energy Desired
’ eino! = # of Energy Sub−Int. Desired in (emin!,emax!)

INPUT ”Enter the Radial Stepping Increment: ”, delta!
INPUT ”Enter the Cut−Off Radius : ”, rc!

14
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INPUT ”Enter the Minimum Energy Desired : ”, emin!
INPUT ”Enter the Maximum Energy Desired : ”, emax!
INPUT ”Enter the Number of Sub−Intervals : ”, eino%

END SUB

SUB INIT

’ de! = Energy Increment
’ nept = Number of Energy Points Desired

nept% = eino% + 1
de! = 0
IF (eino% <> 0) THEN

de! = (emax! − emin!) / eino%
END IF

END SUB

SUB INITIAL

’ yi! = Y − Wave Function at the Origin
’ ypi! = Y − Wave Function at the First Net Point
’ ri ! = Radius for y
’ rs! = Maximum Radius

rs! = rc ! + (2 ∗ delta !)
yi! = 0
ypi! = 1
ri ! = 0

END SUB

SUB ITERATE

’ yf! = Y − Wave Function at Next−To−Final Radius
’ ypf! = Y − Wave Function at Final Radius
’ rf ! = Next−To−Final Radius
’ rpf! = Final Radius
’ epf! = Potential Energy at Final Radius,
’ Same Units as Total Energy e!

15

MISN-0-253 12

y! = yi !
yp! = ypi!
r! = ri !

DO

r! = r! + delta !
ym! = y!
y! = yp!
ept! = ep!(r !, rc !)
yp! = yplus!(delta !, e !, ept !, ym!, y!)

LOOP WHILE (r! < rs!)

yf! = y!
ypf! = yp!
rf ! = r !
rpf! = r! + delta !
epf! = ep!(r !, rc !)

END SUB

SUB GETA

’ a! = Coefficient of Rising Exponential

ak! = SQR(epf! − e!)
a1! = EXP(ak! ∗ rf!)
a2! = EXP(ak! ∗ rpf!)
a! = (ypf ! / a1! − yf ! / a2 !) / ( a2 ! / a1! − a1 ! / a2!)

END SUB

SUB TPUT

PRINT
PRINT USING ”D=##.######”; delta!;
PRINT USING ” RC=##.##”; rc!;
PRINT USING ” E=##.######”; e!;
PRINT USING ” A=##.######”; a!

16
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END SUB

FUNCTION yplus! (yd!, ye!, yep!, yym!, yy!)

’Calculates Y − Wave Function at Next Radius

dst! = yd! ∗ yd! ∗ (yep! − ye!) / 12
yplus! = (2 + 10 ∗ dst !) ∗ yy! / (1 − dst!) − yym!

END FUNCTION

FUNCTION ep! (er!, erc!)

’Calculates Potential Energy for H Atom, Bohr Radius Units

ep! = 0
IF (er! < erc !) THEN

ep! = −2 / er!
END IF

END FUNCTION

FUNCTION ep! (er!, erc!)

’Calculates Potential Energy for Radial Harmonic Oscilator
’Radius Units are hbar∗∗(0.5)/(k∗mass)∗∗(0.25)
’Energy Units are h∗nu/2

IF (er! <= erc!) THEN
ep! = er ! ∗ er !

END IF
IF (er! > erc !) THEN

ep! = erc ! ∗ erc !
END IF

END FUNCTION

B. Sample Results: Hydrogen Atom

Hydrogen Atom Potential:

17
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Please Enter the Radial Stepping Increment: .1
Please Enter the Cut−Off Radius : 3
Please Enter the Minimum Energy Desired : −1.1
Please Enter the Maximum Energy Desired : −0.9
Please Enter the Number of Sub−Intervals : 2

D= 0.100000 RC= 3.00 E=−1.100000 A= 0.063856

D= 0.100000 RC= 3.00 E=−1.000000 A= 0.015900

D= 0.100000 RC= 3.00 E=−0.900000 A=−0.040630

C. Sample Results: Harmonic Oscillator

Harmonic Oscilator Potential:

Enter the Radial Stepping Increment: .1
Enter the Cut−Off Radius : 3
Enter the Minimum Energy Desired : 2
Enter the Maximum Energy Desired : 4
Enter the Number of Sub−Intervals : 2

D= 0.100000 RC= 3.00 E= 2.000000 A= 0.016358

D= 0.100000 RC= 3.00 E= 3.000000 A=−0.000009

D= 0.100000 RC= 3.00 E= 4.000000 A=−0.016484

18
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from Text 1b.)

u0 = A(K)eKr +B(K)e−Kr .

The Schrodinger Equation:

− h̄2

2m

d2u0

dr2
+ Ep u = E u

In any region where Ep is negligible:

− h̄2

2m

d2u0

dr2
= E u0 . (a)

Now:
d2

dr2
(AeKr +Be−Kr) = K2(AeKr +Be−Kr) ,

so, putting into (a),

− h̄
2K2

2m
u = E u ;

− h̄
2K2

2m
= E .

Both sides are constant hence this equation definesK. Thus, for Ep = 0,

u0 = AeKr +Be−Kr ,

provided we calculate K from:

K ≡
√
−2mE

h̄
.

19
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S-2 (from Text 1d, 3c.)

u1 ≡ AeκR1 +Be−κR1 ; Ep(R1) = 0

u2 ≡ AeκR2 +Be−κR2 ; Ep(R2) = 0

1. Multiply the first equation (both sides) by e−κR2 .

2. Multiply the second equation by e−κR1 .

3. Subtract the two resulting equations.

4. Solve for A.

S-3 (from Text 2a.)

Schrödringer Equation: − h̄2

2m

d2u

dr2
+ Ep u = E u . (a)

d2u

dr2
=

d2u

d(r0R)2
=

1

r2
0

d2u

dR2
. (b)

The rest of the the derivation of involves no unusual techniques.
Help: [S-8]

S-4 (from Text 2a, 3b.)

Translate [S-1] into the symbols of this section.

S-5 (from Text 2b.)

“Outside” (ε′p = εc):

d2u

dR2
= (εc − ε′)u0 ,

u0 = Aeκ
′R +Be−κ

′R .

Following the same procedure as in [S-3] we get the result:

εc − ε′ = (κ′)2 .

20
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S-6 (from Text 3c.)

To the right is the Coulomb potential
cut off at 3 Bohr radii. We found val-
ues for yn and A, listed in the table
below, using the third order Numerov
method and these parameters:

ε ≡ E/E0 , R ≡ r/r0 ,

δ ≡ ∆/r0 = 0.1 , y(0.1) = 1 .

Ep

0

R

1 2 3 4

ε y(3.2) y(3.3) A× 104

0.970 1.07942725 0.96843997 -21.13
0.975 1.14723425 1.04213642 5.94
0.980 1.21556178 1.11643747 32.79

We then plotted A vs. ε,
as shown, and obtained:

ε = −0.9739 .

Thus:

E = (−0.9739)(13.6eV)

= −13.2eV .

30

20

10

0

-10

-20

-0.980 -0.975 -0.970
e

-0.9739

A
 ×

 1
0

4

This is not quite as strong binding as in the true hydrogen atom, but
that was to be expected since we weakened the potential by cutting it off
beyond 3 Bohr radii. For comparison, the no-cut-off solution (Rc →∞):
ε = −1 , u = Re−R . You can try these in the Schrödinger Equation
(See Text 2a, 2b).

21
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S-7 (from Text 3c.)

To the right is the Radial Harmonic
Oscillator cut off at Rc = 3. Define:

E0 ≡ hν0

2
,

2πν0 ≡
√

k/m ,

R ≡
√

(mk)1/4(h̄) r ,

ε ≡ (E +
1

2
kr2

c )/E0 .

Ep

0
r

1 2 3 4 5

The “outside” solution is:

u0 = AeκR +Be−κR , with κ ≡
√

R2
c − ε′ .

Using δ ≡ ∆/r0 = 0.1 and the third order Numerov, we find the results
shown below:

10

0

-10

-20

2.99 3.00 3.01
e '

2.9963

A
 ×

 1
0

5

Our value of ε′0 = 2.9963 is very close to the no-cut-off case where:

ε′0 = 3 ; u0 = Re−R
2/2 .

You can try these in the Schrödinger equation (See Text 2a, 2c).
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S-8 (from [S-3])

1. Substitute (b) into (a) in [S-3].

2. Multiply all terms of the equation by (−2mr2
0/h̄

2).

3. Replace Ep and E and their multipliers by εp and ε respectively.
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LOCAL GUIDE

Credit for this Module

As specified in this modules ID Sheet, specifically Output Skill P1, choose
a finite range Schrödinger-equation potential, and locate all the bound
states within a self-chosen energy range.

You may use the program included in this module, one of your own con-
struction, or calculate by hand, relevant values. In any case you must
provide:

1. A printout of the computer program used, either your own or the
one included in this module, or sample of hand calculations. Your
work may not include any part of the sample results included with the
program in the Appendix.

2. An original graph illustrating coefficient A versus energy ε within your
self-chosen range, noting that range and the particular Schrödinger-
potential you have chosen. This graph must clearly illustrate all the
bound states within the energy range. The bound state energies should
be noted in a separate table.

3. The bound state solutions to the Schrödinger equation outside must
be calculated and there behavior in all regions inside and outside the
potential clearly displayed.

Bring all your original material, not a copy, with you to the exam room
and check in as with any other exam. Answer any exam questions per-
taining to the Knowledge Output Skills of the module.

The last “question” of the exam will direct you to hand in your original
materials relating to the project. Your “answer” to this question should
be a reference to your material which you should attach to your exam
sheets, immediately following the answer sheets.

A lack of project originals will cause the grader to assign a grade of zero
to the entire exam.

Now read all of this module’s Model Exam.
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MODEL EXAM

1. See Output Skill K1-K3 in your module’s ID Sheet. Some or all of
these skill may be tested in the actual exam.

Examinee:
On your computer output sheet(s):

(i) Mark page numbers in the upper right corners of all sheets.

(ii) Label all output, including all axes on all graphs.

On your Exam Answer Sheet(s), for each of the following parts of items
(below this box), show:

(i) a reference to your annotated output; and

(ii) a blank area for grader comments.

When finished, staple together your sheets as usual, but include the origi-
nal of your annotated output sheets just behind the Exam Answer Sheet.

2. Using pre-prepared materials, show that you have found all bound
states of the Schrödinger equation within a self-chosen energy range.
Display the solutions for those bound states, clearly showing the
decaying-exponential behavior outside the potential.

INSTRUCTIONS TO GRADER

If the student has submitted copies rather than originals of the computer
output, state that on the exam answer sheet and immediately stop
grading the exam and give it a grade of zero.

Brief Answers:

1.- 2. See this module’s text.
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