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SPHERICAL MIRRORS
by
Kirby Morgan

1. Overview

la. Why Non-Planar, Spherical. Non-planar mirrors are needed in
situations such as these: (1.) when an image needs to be expanded, as
with shaving, dental, and surgical mirrors; (2.) when an image needs to
be compressed, as with wide angle automotive mirrors; and (3.) when we
need a nearby image of a far-away object, as with astronomical telescope
mirrors. In contrast to the planar mirror image, which is always virtual,
upright, unmagnified, and equidistant from the mirror,! the non-planar
mirror image may be real or virtual, upright or inverted, of different size
than the object, and at a different distance from the mirror. Such non-
planar mirrors are usually spherical, both because they are then easy to
manufacture and because they usually produce a reasonable compromise
between competing desirable image qualities.

1b. Four Design Methods. The designing of an object-mirror-image
system is carried out either through ray tracing or through formal math-
ematics and, within each of those two methods, either approximately or
exactly. Altogether, then, there are four methods. The two “exact” meth-
ods are used in all cases requiring high precision, but they are laborious
unless sophisticated “computer assisted design” programs are used. The
approximate formal method is generally used to study the approximate
effect of varying the design parameters. The approximate ray tracing
method provides a picture of the design and serves as a check on the for-
mal design. All four methods use the law of reflection plus the knowledge
that an image point is where various rays emanating from an object point
either all intersect or appear to all intersect. Repeating this procedure
for various points on the object allows one to build up the image, point
by point.

1lc. Concave and Convex Mirrors. A spherical mirror (i.e. a mirror
in the shape of a partial spherical shell) can be either “concave” or “con-
vex.” If the reflecting surface is on the same side of the partial shell as the
center of curvature, the mirror is said to be “concave.” If the reflecting
surface is on the other side, the mirror is said to be “convex.”

ISee “Reflection and Planar Mirrors” (MISN-0-260).
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2. Exact Methods: Principal Rays

2a. The Principal Axis. A line drawn through both the “center of
curvature” of a spherical mirror and a point on an object placed in front
of the mirror is called the “principal axis.” This is shown in Fig.1 for
an object of arbitrary shape. A line is drawn normal to the principal
axis and a second reference point is chosen that lies on the object and on
this line. The whole diagram is then rotated so that the principal axis is
horizontal (see Fig.2). It is traditional to replace the two reference points
by that simplest of oriented line segments, an arrow, (see Fig.2). After
constructing the image points corresponding to the head and tail of the
arrow, we will be able to sketch the rest of the object’s image without
further optical construction.

2b. The Three Principal Rays. An infinite number of light rays
emanate from an object point in front of a spherical mirror, but we use

principal axis
C
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Figure 3. Principal rays, illustrated for (a) concave mirror
and (b) convex mirror. The dashed lines at the mirror sur-
faces are surface normals (radial lines), used for constructing
the reflecting angles.

just three of the rays to construct the approximate image point. These
three rays are called the “principal rays” for the system of object point
and mirror. Fig.3 shows the three principal rays, each of which reflects
from the mirror’s surface according to the basic rule of reflection: the
angle of incidence equals the angle of reflection. The three rays are:

1. The “Parallel Ray” (PR in Fig. 3), which leaves the object point and
heads toward the mirror on a path parallel to the principal axis.

2. The Focal Ray (FR), which leaves the object point and heads to-
ward the mirror in a direction such that after reflection it travels
parallel to the principal axis.

3. The Central Ray (C'R), which leaves the object point and heads
toward the mirror along a mirror radius. Upon reflection, this ray

MISN-0-221 4

travels directly back along its incident path because it strikes the
mirror surface at normal incidence.

3. Constructing the Image

3a. Finding an Image Point. An object point’s “real” image point
is found by constructing the three principal rays, as shown in Fig. 3, and
finding the after-reflection point at which they intersect. However, if the
rays are diverging from one another after reflection from the mirror’s
surface, there is no place where they intersect and hence the image is not
“real.” For this case the rays must be extended backward in order to find
their after-reflection point of apparent intersection: in this case the image
is “virtual” rather than “real.”

3b. Paraxial Rays and “Focus”. In general, the three principal rays
from an object point will not intersect in the neighborhood of a single
point unless they travel nearly parallel to the principal axis. Rays that
are indeed nearly parallel to the principal axis are called paraxial rays
and are important since they produce “sharp” images. Rays which are
not paraxial produce an object-point image that is spread out, a “fuzzy”
image. This effect is called “spherical aberration” and it is present to
some extent in the images of all objects except those an infinite distance
from the mirror (an infinite distance makes such rays paraxial).

3c. Constructing an Arrow’s Image. The image of a vertical
object-arrow situated in front of a spherical mirror is found by tracing
the principal rays from the object’s head point to its image point and

Figure 4. The tail of
the image arrow is on
the principal axis, at
the same x position as
the head.
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Figure 5. Definitions of quan-
tities used in Descartes’ for-
mula. The center of curvature
is C, the focal point is FP.

then sketching in the rest of the image arrow. Since the object arrow’s
tail is located on the principal axis, as in Fig. 4, the image tail-point will
also lie on the principal axis. This is because its three principal rays en-
tirely coincide with that axis. The image head-point is at the intersection
of the three principal rays coming from the object head-point, as in Fig. 4.
For paraxial rays, construction of any two of the three rays is sufficient
to determine the image point. The third ray can be used to check the
intersection of the other two.

3d. Classifying the Image. Images may be classified as real or vir-
tual, upright or inverted, enlarged or reduced. For example, in Fig. 4 the
image is real, inverted, and smaller than the object (i.e. its magnification
or ratio of image size to object size is less than one). For highly parax-
ial rays, the magnification M can also be quite accurately expressed in
terms of the object and image heights or in terms of the object and image
distances:

M=-—-=-= approximately. (1)

ho Zo

A negative magnification will mean that the image is inverted. For an
object in front of a spherical mirror, all real images are inverted and all
virtual ones are upright. Help: [S-1] Also notice that comparing different
mirrors, using a fixed object distance, the magnification is proportional
to the image distance.
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4. Approximate Formal Method

4a. Descartes’ Formula. Descartes’ formula for the position of an
image formed by highly paraxial rays from a spherical mirror is usually
quite accurately given by:
L + 1 = 2 approximately, (2)
Lo Ty Zc
where x, is the distance along the principal axis from the mirror to the
object, x; is the distance from mirror to image, and x¢ is the distance from
the mirror to its center of curvature (see Fig.5). Any distance measured
on the same side of the mirror as the reflecting surface is positive; on
the other side, negative. Thus for a concave mirror x¢ is positive; for a
convex mirror, negative.

4b. Focal Point, Focal Length. Descartes’ formula can also be writ-
ten in terms of the focal length of a spherical mirror. When light is
incident parallel to the principal axis of a spherical mirror (as it would
from a very distant object on the axis), the point at which the reflected
paraxial rays (or their backward extensions) intersect is called the focal
point. This is illustrated in Fig. 6. The distance xp, measured along the
principal axis from the mirror to the focal point F, is known as the fo-
cal length of the mirror, and can be determined by letting x, — oo in
Descartes’ formula, Eq. (2). This immediately gives for the location of the
focal point:

Tp=x0c/2 approximately. (3)

Descartes’ formula can thus be rewritten in terms of the focal length as:
1 1 1
—t —=— approximately. (4)
i) €T; TR

Since xp = x¢/2, it is positive for concave mirrors and negative for convex

ones, as is T¢.-

4c. Example of Use of Descartes’ Formula. Given an object 2 cm
high placed 3 cm from a convex mirror that has a radius of curvature of
12 c¢m, you can find the position and size of the image and the focal length
of the mirror. Using Descartes’ formula, we see at once that the image is
2 cm from the mirror on the side opposite that of the object. Help: [S-2]
The focal point is calculated, using Eq. (3), to be 4 cm beyond the image.
Help: [S-3] Finally, Eq. (1) gives the image as 4/3 cm high, upright, and
virtual. Help: [S-4]

2Descartes is pronounced “day-cart’.”

10
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>
X Figure 6. Parallel inci-
dent rays are focused at
: a single point, the focal
' point. The dashed radial
Xc lines all go through C.

4d. Concave — Planar — Convex as Radius Decreases. It would
be amusing to watch the change in an object’s mirror-formed image if the
radius of curvature of the mirror could be gradually changed from highly
concave to planar to highly convex while keeping the mirror and the ob-
ject position fixed. Let us carry out the experiment mathematically with
the aid of Descartes’ formula. First, with the mirror highly concave, the
radius will be small and positive so the image will be located just be-
yond the focal point: it will be small, real and inverted. Help: [S-5] As
R is increased, one can follow the image’s four characteristics (position,
size, image type and orientation) by mentally working Descartes’ formula.
There are interesting regions marked by sharp boundaries, and the char-
acteristics one finds for the planar mirror (R — oo) are in agreement with
everyday observation. In order for Descartes’ formula to change contin-
uously, after R — oo it should be increased away from negative infinity
(toward zero), and the mirror will finally end up being highly convex.
One finds that, for convex mirrors, the image is always virtual, while for
concave mirrors the image is virtual only if the object is inside the focal
point (z, < xr) and real otherwise (x, > xr). It is possible to construct
a graph representing these characteristics of the image as the radius of
curvature is varied: you may find it interesting to make such a graph
yourself, plotting each of the image properties versus the inverse of the
radius. We suggest labeling the regions of image and mirror type.

5. Approximate Graphical Method

If the principal rays are paraxial, the process of plotting their paths
can be simplified. First, the spherical mirror is replaced by a plane surface

11
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Figure 7. Illus-
tration of “parax-
ial ray construc-
tion” for spherical
mirrors (see text).
Here the object
is inside the focal
point so the im-
age is virtual.

at the same position. The principal ray paths are then determined solely
by the positions of the object point, focal point, and center of curvature
rather than by apparent angles of incidence and reflection. Fig.7 gives an
illustration of this “ray-tracing” technique. To enhance the accuracy of
the method, the x and y directions are plotted to different scales. This is
permissible just as long as the three principal rays are drawn as “reflecting
from” the surface at = 0 in such a way as to pass through the F' and C
points properly.
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Glossary

e center of curvature: for a lens or mirror, the center of the (imagi-
nary) circle of which the lens or mirror’s arc is a part.

e central ray, mirror: a light ray that leaves the object point and
heads toward the mirror along a mirror radius. Upon reflection, this
ray travels directly back along its incident path because it strikes the
mirror surface at normal incidence.

e concave: a curved surface that looks like the inside of a spherical
shell.

12
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e convex: a curved surface that looks like the outside of a spherical
shell.

e Descartes’ formula: is used to calculate the position of an image
formed by paraxial rays striking a spherical mirror:

1 1 1

Lo Ty TF

)

where z, is object distance, x; is image distance, xr is mirror’s focal
length.

e focal length: the distance from a lens or mirror to its focal point
along its principal axis.

e focal point: point of intersection of reflected rays that approached
the lens or mirror parallel to its principal axis.

e focal ray, mirror: a light ray that leaves the object point and heads
toward the mirror in a direction such that after reflection it travels
parallel to the principal axis. Either the ray or its backward extension
goes through the focal point,

e parallel ray: a ray that leaves the object point and heads toward the
mirror on a path parallel to the principal axis.

e paraxial rays: rays that travel nearly parallel to the principal axis
of a lens or mirror. The closer the rays are to being parallel to the
principal axis, the better the focus but the less they are useful.

e principal axis: a line drawn through a lens’ or spherical mirror’s
center of curvature and through a reference point on the object being
observed.

e principal rays: the three rays (central, focal, and parallel) used
to construct the image of an object. Only two rays are necessary for
construction of the image.

e radius of curvature: distance from a lens or mirror surface to its
center of curvature.

e spherical aberration: A defect of spherical mirrors that arises be-
cause the light rays from a single point on the object do not form a
single point on the image, thus producing a blurred or “fuzzy” image.

e spherical mirror: A mirror in shape of a partial spherical shell.

13
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_0 XC PR XO

Figure 8. Definition of the symbols 6, ¢, h, h’ occurring in
the ray equations.

A. Exact Formal Method

(for those interested)

Aa. The Exact Ray Equations. Using a little trigonometry, and the
angle-distance definitions shown in Fig. 8, we find for the y-coordinates of
the three rays:
h(z — z¢) )

xo —Tc

ypr(x) = h+ (A — z) tan26,

ycr(z) =

where:
A =2c(1 — cosb), 0 =sin"(h/zc);

yrr(z) = —h' = —zcsind,
and where ¢ is the solution to:
xesinf = x,tan(20) — h — z¢(1 — cos 0) tan(26).

Note that each of the ray equations has the form: y = mz +b. Also note
that pr(O) > h.

The point of intersection of any two of these rays can be found by
equating their y-values and solving for the resulting z-value and its cor-
responding y-value.

14
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Figure 9. Illustra-
tion of spherical aberra-
tion. The shaded area
is bounded by the prin-
cipal rays.

Ab. Proof of Spherical Aberration by Ray Tracing. If one makes
an exact trace of the three principal rays from a point object, it quickly
becomes apparent that the three rays do not intersect in a single point.
This is illustrated in Fig. 9. Note that the image of the object arrow-point
is spread out over a large region. This “spherical aberration” means that
one can not really specify a single x-value for the image position. This is
the origin of the “approximate” labels on the equations in the text of this
module.

Ac. Paraxial Rays, Aperture, Spherical Aberration.  Suppose
we continuously shrink the size of the object in Fig.9 so that the angles
between the principal rays and the principal axis become smaller and
smaller (Fig. 10). When these angles have become much smaller than one
radian, we find that the amount of spherical aberration then decreases as

diaphragm
FR

-

Figure 10. Same set-
up as in Fig.9 but with
wide-angle rays blocked
off by a diaphragm.
Note the precise image.
The diaphragm’s open-
ing is then said to be a
“small aperture.”

15
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the squares of those small angles. Thus a small enough aperture will pro-
duce an aberration that is negligible, as is the case shown in Fig. 10. Put
another way, one can avoid spherical aberration by using spherical mirrors
in situations where only paraxial rays contribute to the image.

B. The Paraxial Approximation

Ba. Paraxial Rays and Descartes’ Formula[]. In order for a
point object to have a point image, we must require there to be a single
intersection point for all reflected rays. The z-position of that intersection
is the image position x;, so the principal rays in Fig.8 must obey the
condition:
yor(z:i) = ypr(z:) = yrR(z:).

This condition is not satisfied unless the rays are paraxial so that we
can make the approximations (assuming angles are expressed in radians):
tan(20) ~ 26, cos§ ~ 1, sinf ~ 0, tan(2¢) ~ 2¢, cos ¢ ~ 1, and sin ¢ = ¢.
Of course these approximations are only valid for angles much smaller
than one radian. With these replacements the ray equations reduce to:

yon(s) = MI=2C) 6
(o) = (1= 22) ©
yen(o) ~ 5 @

These three paths do in fact intersect at the position z; given by Descartes’
formula, as can be easily verified.

Bb. Fractional Error. The fractional error incurred in making a
small angle replacement, to produce a paraxial ray, is approximately the
square of the ray’s angle to the axis in radians.?® If, for example, § and ¢ in
Fig. 8 are each 0.1 radian, the error will be about 1%. This assumes that
non-paraxial rays are not permitted to contribute to the image, either
because of the limited size of the mirror or because such rays are blocked
by a shield. Descartes’ formula is quite accurate, and the image is quite
sharp if the rays are paraxial:

62, ¢* < 1(radian)?.

3For example, if  is expressed in radians then cos § = 1—602/24. .. so the fractional
error is §2/2. See “Taylor’s Series for the Expansion of a Function About a Point”
(MISN-0-4).

16
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b. Determine whether the mirror is concave or convex, the image real
or virtual.

PROBLEM SUPPLEMENT
c. Sketch the situation, labeling the principal rays, to help demon-

strate that your answers to (a) are correct. [C
1. An object is placed 15cm in front of a concave spherical mirror which Y (2) (€]

has a radius of curvature of 60 cm.

a. Determine the distance from the mirror to the focal point and to )
Brief Answers:

the image.
b. If the object is 1 cm high, determine the height and orientation of A a. xp =2¢/2=1.00m/2 =0.50m (Ans., Prob. 4)
the image, and whether it is real or virtual. 1 1 1 1 1 1
c. Draw a ray-tracing diagram which graphically demonstrates that Z  zp 2z, 050m  0.75m  1.50m
your solutions to parts (a) and (b) are correct. [B] 2; = 1.50m (Answer to Problem 4)
2. As above, but given that the mirror is convex with a radius of 25cm be v = My, — — %Yo _ _ (1.50m)(3cm) —6em:
and that a 1cm high object is 15cm from the mirror. [G] PV T MY m T T 0.75m B ’

3. Draw a sketch demonstrating that paraxial rays incident on a spherical inverted because y; is negative, real because x; s positive

mirror can produce significant spherical aberration, hence an indistinct c.
image, if the mirror has too much curvature. [E]

4. As in Problem 1, but given that the mirror is concave with a radius of
1.00 m. The object distance is 0.75m and its height is 3 cm. [A]

5. As in Problem 1, but given that there is an upright virtual image the C
same size as the object and that the 1/2 inch high object is located 1 =t NG [ > X
foot from the mirror. F FR
d. Determine the radius of curvature of the mirror. NOTE: This prob- x PR
lem involves using the law of reflection directly. [D] CR
6. (just for those interested) As in Problem 1, but the mirror is convex B B 9 30
with a radius of 30cm and a 0.5cm high virtual object is at a dis- - 8. TF =2¢/2=30cm
tance 24 cm from the mirror (“on” the unsilvered side, being an image i _ L - i _ 1 . 1 _ 1
produced by another mirror or lens). z; T T, 30cm 15cm 30 cm
d. Determine th ification. [F vi = em
. Determine the magnification. [F] ) . it (=30 cm) (1 cm) )
. P = o = — = — = cm
7. An object one inch high and 18 inches from a spherical mirror produces Y Y To 15¢cm
an upright image two inches high. upright because y; is positive, virtual because z; is negative.

a. Use Descartes’ formula to determine the mirror’s focal point and
radius of curvature, and the position of the image.

17 18
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C. a2, = Ma, = _YiTo _ _(Zin)(.18in)
Yo lin
z; = —36in
111 1 11
rr 1  x, —36in  18in  36in

rp =36in; x¢ = 2xp = 72in

b. x; is negative so virtual; x¢ is positive so concave

i FR

D. Given: M =+1, y, =0.5in, z, = 12in

a. x; = —Mz, = —(4+1)12in = —121in; virtual

1111 1

tp  x 1, —12in  12in
rp = 00, a plane mirror

b. y; = My, = 0.5in, upright because y; > 0

=0

19
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C.
anotherray

A PR, CR, FR

—_— -

anotherray

d. z¢c =2zp = 0

F. a. zp =2¢/2=-30cm/2 = —15cm

l B i - i B 1 _ 1 B 1
x; T op T, —15¢cm  —24cm —40cm
z; = —40cm
; —4 .
Tl _ (~40em)(0.5 em) = —0.83cm , inverted

b. Yi = Myo = = —
T, —24 cm
because y; < 0, virtual because x; is negative.

20
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c.
CR
L PR
C- A
————————— e i B
{ PP TN X
,27:{:1,,,,,,,,,,,,,,,:\, ~ FR
T; —40cm
d M=——=— = —1.67
T, —24 cm
G. a. zp =2¢/2=(-25cm)/2 = —12.5cm
11 1 1 I 1
x; xF T —125cm 15cm  —6.82cm
z; = —6.82cm
iYo —6.82 1 i
b. y; = My, = Db _ —( cm)(1 em) = 0.45 cm, upright be-
T, 15cm
cause y; is positive, virtual because x; is negative
c.

PR
CR

= 1 .

21
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SPECIAL ASSISTANCE SUPPLEMENT

(from TX-3d)

Taking x, as positive:
a. For a real image, z; > 0.

"y
M = —= is negative and thus the image is inverted.
Zo

b. For a virtual image, z; < 0.

M is positive and image is upright.

S-2 (from TX-4c)
112
T, T ¢
112
3cm  x;  —12cm
r; = —2cm; i.e. image is 2cm behind the mirror.

S-3 (from TX-4c)

zc  —12cm

T = 5 = > = —6cm, i.e. 4cm beyond image
S-4 (from TX-4c)
b —2em 2
ho To 3cm 3
2h, 4
P = = — CIn
3 3"

M is positive, so image is virtual and upright.

22
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AS-2

S-5 (from TX-4d)

Solving for z;: z; =

and real (z; > 0).

To —TF

When R — 0, that implies xp — 0, and x; will approach zr and
be larger than . The image is small (M = 0), inverted (M < 0)

23
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MODEL EXAM

ME-1

1. See Output Skills K1-K4 in this module’s ID Sheet. One or more of

these skills, or none, may be on the actual exam.

2. An object one inch high and 18 inches from a spherical mirror produces

an upright image two inches high.

a. Use Descartes’ formula to determine the mirror’s focal point and

radius of curvature, and the position of the image.

b. Determine whether the mirror is concave or convex, the image real

or virtual.

c. Sketch the situation, labeling the principal rays, to help demon-

strate that your answers to (a) are correct.

Brief Answers:

1. See this module’s text.

2. See this module’s Problem Supplement, problem 7.
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