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MISN-0-2 1

SUMS, DIFFERENCES AND

PRODUCTS OF VECTORS

by

J. S. Kovacs, Michigan State University

1. Introduction

1a. Scalars, Vectors, and Others. Most physical quantities can be
classified mathematically as either scalars or vectors. Values of scalar
quantities are single numbers, sizes, and this includes such quantities as
temperature, work, distance, speed, musical pitch, and electric charge.
Values of vector quantities have both size and direction, and this includes
such quantities as displacement, velocity, acceleration, force, electric field,
and momentum. There are other quantities whose values cannot be repre-
sented by either scalars or vectors; examples are color, stress, and inertia.

The rules for adding, subtracting, and multiplying scalars are just
the familiar rules of arithmetic and algebra. In this module we deal with
the rules for adding, subtracting, and multiplying vectors, rules that are
used throughout professional science and engineering.

1b. Indicating Vectors Visually. Just as scalar quantities are re-
ferred to in graphs, drawings, text, and equations by alphabetic symbols,
vector quantities are indicated by the use of arrows.

As a scalar example, suppose the length of a panel of concrete in a
highway increases as its temperature rises. While describing the situation
mathematically, we represent the length by the symbol L and the tem-
perature by the symbol T . To indicate that the length is a function of
temperature, we write L(T ).

As a vector example, suppose a particular force is changing with time.
We write ~F to indicate that we are treating the force as a vector and t to
show that we are treating time as a scalar. To indicate that the force is
a function of time we write ~F (t). If we are only interested in the size of
the force, not its direction, we write: F (t).

When we want to indicate the size and direction of a vector quantity
on a graph or a sketch of some physical phenomenon, we draw it as an
arrow, a line with an arrowhead on one end (see Fig. 1). The length of the
arrow shows the vector quantity’s magnitude (its size) and the arrowhead
shows its direction.
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F
`

Figure 1. Force indicated on a di-
agram.

¤ In Fig. 1 the force scale is 10 lb per inch. Determine the magnitude of
the force. Help: [S-1]1

2. Addition, Subtraction of Vectors

2a. General Features. When the rules of vector addition are prop-
erly used to add two vectors, the result is a third vector which usually has
a different magnitude and direction than those of the two vectors being
added. We here present two methods for adding two vectors: both pro-
duce the same result. In the graphical method you draw the vectors to
scale and then construct the sum on the drawing and measure its mag-
nitude and direction. The result only has the precision of your drawing
and does not produce symbolic answers. In the trigonometric method
you sketch the vectors and apply simple rules of trigonometry.

2b. Addition: Graphical Method. Here are the rules for adding
two vectors graphically:

1. Take either of the vectors to be added and draw it on graph paper
to scale, so it is an arrow of appropriate magnitude and direction.

2. Draw the arrow representing the second vector on the same graph,
to the same scale, with the correct magnitude and direction, but
with its tail at the head of the first arrow.

3. Draw a third arrow on the graph, going from the tail of the first
arrow to the head of the second arrow. This third arrow is the sum
of the other two: it is called the “resultant,” which is the vector
word for “sum.”

These three steps are illustrated in Fig. 2, where each of the vectors being
added is taken in turn as the first vector. Note that the resultant is the

1This notation indicates that help is available in sequence [S-1] of this module’s
Special Assistance Supplement.

78



MISN-0-2 3

A + B

B

A

A

B

B + A

(a) (b)

` `

`

`
`

`

` `

Figure 2. Two vectors are
added two ways: (a) ~A is

drawn first and then ~B is
added to it; (b) ~B is drawn

first and then ~A is added
to it. The resultants in the
two methods are the same:
they have identical magni-
tudes and directions.

same in both cases.2

¤ Show, graphically, that the result of ~A+ ~B is the same as the result of
~B + ~A. Help: [S-2]

2c. Addition: Trigonometric Method. The trigonometric method
of adding two vectors makes use of the law of cosines. This is illustrated
in Fig. 3, where ~R is the “resultant” from adding vectors ~A and ~B. The
magnitude of ~R is determined from the right triangle whose sides are
A + B cosφ and B sinφ and whose hypotenuse is R. Here φ is the angle
B makes with A. Then:

R2 = (A+B cosφ)2 +B2 sin2 φ ,

and the magnitude of R is:

R =
(

A2 +B2 + 2AB cosφ
)1/2

. (1)

Most scientists and engineers either remember this equation or become
proficient at quickly deriving it.3 The angle that vector ~R makes with the
vector ~A can also be expressed in terms of the magnitudes of ~A and ~B
and the angle φ by (see Fig. 3):

θ = tan−1

[

B sinφ

A+B cosφ

]

. (2)

¤ Check Eqs. (1) and (2) by measuring and then calculating with the
relevant quantities in Fig. 3. Help: [S-3]

2Mathematically, one says that vector addition is commutative.
3The derivation is in Sect. 4d of this module.
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Figure 4. Illustration of
vector subtraction.

2d. Subtraction. Subtraction is performed by using the rules for vec-
tor addition. That is, the subtraction of one vector from another is ac-
complished by adding the negative of the vector being “subtracted.” The
negative of a vector is most easily seen from its geometrical representation
where the head and the tail of the arrow are interchanged. The magni-
tude of the vector is unchanged but its direction reverses. The subtraction
~A− ~B is illustrated in Fig. 4.

Note also in Fig. 3 the difference ~R− ~B must be ~A since ~A+ ~B = ~R.
If the head and tail of ~B are interchanged, the result is − ~B and that
vector can then be added to ~R: ~R+ (− ~B) = ~A.

¤ Try it geometrically and see if you get ~A!

3. The Product of Two Vectors

3a. Two Kinds of Products. There are two kinds of multiplication
possible for two vectors: one produces a scalar result while the other pro-
duces a vector result. Important physical quantities are usually obtained
by such multiplication. For example, work is often obtained as a scalar
product of force and displacement vectors, while angular momentum is of-
ten obtained as a vector product of radius and momentum vectors. Each
of these kinds of multiplication has its own rules.
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Figure 5. Two rules for finding the direction of ~C = ~A× ~B
by: (a) the “right hand” rule; (b) the “screw” rule.

3b. The Scalar Product. The scalar product of two vectors ~A and
~B is the magnitude of ~A times the magnitude of ~B times the cosine of
angle between them (this angle is usually denoted θ). The scalar product
is sometimes called the “dot product” because of the way it is indicated
visually:

scalar product ≡ ~A · ~B = AB cos θ. (3)

¤ Show that the scalar product of two vectors is zero if the two are
perpendicular.

¤ Under what other circumstances will the scalar product be zero?
Help: [S-4]

¤ Let ~R = ~A + ~B and let θ be the angle between ~A and ~B. Use R =√
R2 =

√

~R · ~R to show that R =
√
A2 +B2 + 2AB cos θ. Help: [S-5]

Note: Some professionals use this method to produce the “adjacent sides
and included angle” trig formula.

3c. The Vector Product. The vector product of, say, ~A and ~B, is
itself a vector and we will show separately how to find its magnitude and
direction. The vector product is sometimes called the “cross product”
because of the way it is indicated visually:

~C = ~A× ~B.
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The magnitude of ~C is defined as magnitude of ~A times the magnitude of
~B times the sine of the angle between them, as measured counterclockwise
from the direction of ~A to the direction of ~B:

| ~C| = | ~A× ~B| = AB sin θ. (4)

The direction of the vector ~C is perpendicular to the plane formed by ~A
and ~B and that narrows it to one of two directions. We will here describe
two rules for obtaining the exact direction.

The “right-hand rule”:

1. Extend the index finger of your right hand in the direction of the
first vector ( ~A in the example) with the rest of the fingers closed.

2. Rotate the index finger and hand until the index finger aligns with
the second vector ( ~B in the above example). That is, the first of
the two vectors denoted in the cross product is rotated toward the
second through the smaller angle between them ( ~A rotated toward
~B such that θ in Fig. 5 decreases) and the curled fingers of the right
hand follow this rotation.

3. The direction of the extended thumb gives you the direction of ~C
(see Fig. 5).

The “screw” rule:

1. Imagine placing vectors ~A and ~B tail-to-tail, as in Fig. 5.

2. Imagine a screw with right hand threads placed where the tails of the
two vectors come together, with the axis of the screw perpendicular
to the plane formed by the two vectors (see Fig. 5).

3. Imagine a screwdriver placed in the screw with the axis of the screw-
driver being along the axis of the screw.

4. Imagine a spot on the screw, next to vector ~A.

5. Turn the screwdriver through the shortest angle so the spot is now
next to vector ~B. The direction the screw went (in or out) is the

direction of the product vector ~C (see Fig. 5).

¤ Show that the vector product of two vectors is zero if the two are
parallel.

¤ Show that the vector product of a vector with itself is zero.
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Figure 6. Cartesian components of a vector.

4. Using Cartesian Components

4a. The Components. You can use the Cartesian components of
vectors to add and subtract the vectors and to take their scalar and vector
products. Here is the process for obtaining the components of vectors so
the components can be combined according to the rules for addition,
subtraction, and scalar and vector multiplication. For two vectors, say ~A
and ~B (refer to Fig. 6 in each step):

1. Draw a set of Cartesian (mutually perpendicular) coordinate axes
and label them x, y, and z, as usual. Choose the origin and ori-
entation of the axes for convenience in the problem being tackled
(this will become automatic with experience). The results will be
independent of your choice of axes.

2. Draw lines from each end of both ~A and ~B to the axes, such that
these lines are perpendicular to the axes. Thus for the two vectors
~A and ~B there will be four such lines to each of the three axes (12
lines in all).

3. Label Ax the distance along the x-axis between the two perpendic-
ulars from the ends of ~A. Label Ay and Az the similar distances

along the y- and z-axes for ~A. Do the same for ~B, labeling the
projections along the axes Bx, By, and Bz.
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4. Call Ax, Ay, and Az the components of ~A and Bx, By, and Bz the

components of ~B.

The components of a vector are frequently presented as a triad of numbers,
in the specific order: x-component, y-component, z-component. Thus for
~A we write:

~A = (Ax, Ay, Az). (5)

¤ Find the numerical values of the components of the vector in Fig. 6.
Help: [S-6]

4b. Addition. If the two vectors to be added are ~A and ~B, with
components (Ax, Ay, Az) and (Bx, By, Bz), then the resultant vector ~R
has components (Ax +Bx, Ay +By, Az +Bz). That is,

Rx = Ax +Bx ,

Ry = Ay +By ,

Rz = Az +Bz .

(6)

Thus if the Cartesian components of two vectors are known, the Cartesian
components of the resultant are easy to compute. The verification of this
equation is left to an Appendix.

¤ Vector ~A = (1, 0, 1) while ~B = (0, 1,−1). Determine the components

of R = ~A+ ~B. Help: [S-7]

4c. Subtraction. If ~B is to be subtracted from ~A to produce ~C,

~C = ~A− ~B

we just use the rules of addition but with the sign of the components of
~B made negative:

Cx = Ax −Bx ,

Cy = Ay −By ,

Cz = Az −Bz .

(7)

¤ Example: Vector ~A = (1, 0, 1) while ~B = (0, 1,−1). Determine the

components of R = ~A− ~B. Help: [S-8]
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4d. Scalar Product. In terms of Cartesian components, the scalar or
“dot” product of A and B to form C is:

C = ~A · ~B = AB cos θ = AxBx +AyBy +AzBz. (8)

¤ Vector ~A = (1, 0, 1) while ~B = (0, 1,−1). Use Cartesian components

to determine: R = ~A · ~B. Help: [S-9]

4e. Vector Product. The six remaining products of the components
of two vectors may be combined so that they form the three components of
another vector which is used in almost all areas of physics and technology.
This new vector is called the vector product of the two combining vectors
and is written with a multiplication sign. Here is how the vector ~C is
written as the vector product of ~A and ~B:

~C = ~A× ~B . (9)

In terms of Cartesian components:

Cx = AyBz −AzBy

Cy = AzBx −AxBz

Cz = AxBy −AyBx

(10)

The mnemonic for remembering the order of the subscripts on these com-
ponents is to note that, starting from left to right, the first three subscripts
are always cyclic permutations of xyz (xyz, yzx, zxy).4

¤ Vector ~A = (1, 0, 1) while ~B = (0, 1,−1). Determine the components

of ~R = ~A× ~B. Help: [S-10]

5. Using Unit Vectors

5a. Cartesian Unit Vectors. A vector can be written as the sum
of its components through the use of “unit vectors,” which are three
vectors of unit length that each point outward along one of the three
Cartesian coordinate axes you are using. We write these unit vectors as
x̂, ŷ and ẑ, where x̂ is a vector of unit length that points in the direction

4Note that the combination AyBz − AzBy is the x-component of this vector, ex-
pressed with respect to the same coordinate system. Two other pairs of products
complete the groupings (and, incidentally, together with the combinations that form
the scalar product, exhaust the possibilities of pairs of products of components of A

and ~B.
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x̂

ŷ

V
`

= 5.0m V̂ = 4.0m x̂ + 3.0m ŷ

3.0m ŷ

4.0m x̂

Figure 7. Illustration of combining unit vectors and a vec-
tor’s components.

of increasing values along the x-axis, ŷ similarly along the y-axis, and ẑ
along the z-axis.5 Since the unit vectors are of unit length, a vector ~A
with components (Ax, Ay, Az) can be written as the sum of three vectors:

~A = Axx̂+Ay ŷ +Az ẑ. (11)

This addition is illustrated for two dimensions in Fig. 7.

5b. Products Using Cartesian Unit Vectors and Components.
¤ Use the definitions of products of vectors, Eqs. (8) and (10), to show
that:

x̂ · x̂ = 1, ŷ · ŷ = 1, ẑ · ẑ = 1,

x̂ · ŷ = 0, x̂ · ẑ = 0, ŷ · ẑ = 0,

x̂× ŷ = ẑ, ŷ × ẑ = x̂, ẑ × x̂ = ŷ,

x̂× ẑ = −ŷ, x̂× x̂ = 0, etc.

(12)

Note that, in the vector product, the order (xyz), in any cyclic permuta-
tion, has a plus sign on the right hand side. Any other order has a minus
sign.6 Help: [S-11]

5c. The Length of a Vector in Terms of its Components. To
find the length of a vector ~A write:

~A = Axx̂+Ay ŷ +Az ẑ

5Different authors use different notations for unit vectors along the axes of a Carte-
sian coordinate system. We use x̂, ŷ and ẑ for unit vectors along the x-, y-, and z-axes,
which is a commonly used notation. Other authors have used such notations as: (î, ĵ,

k̂), (i, j, k), (ê1, ê2, ê3), and (ûx, ûy , ûz). All such sets are equivalent.
6This provides a test for whether a Cartesian coordinate system is right-handed,

which is what we use throughout science and engineering. An improperly defined,
left-handed, system would produce x̂× ŷ = −ẑ.
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and take the scalar product of ~A with itself:

~A · ~A = (Axx̂+Ay ŷ +Az ẑ) · (Axx̂+Ay ŷ +Az ẑ)

= A2
x +A2

y +A2
z .

where we have used the products of unit vectors, Eq. (12).

Now from the definition of the scalar product, Eq. (8), we know that
~A · ~A = A2, which is the square of the length of vector ~A. Then the length
of A is given in terms of its components by the square root of the product
of A with itself, ~A · ~A:

A =
√

A2
x +A2

y +A2
z . (13)

¤ Show that: | ~A× ~B| = | ~B × ~A|. Help: [S-17]

¤ Show that: ~A× ~B = − ~B × ~A. Help: [S-18]

5d. Determinant Form of the Vector Product. Unit vectors can
be used to write the vector product in determinant form. Some people
find easier to remember these forms:

~C = ~A× ~B =

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
Ax Ay Az

Bx By Bz

∣

∣

∣

∣

∣

∣

(14)

The minors of the unit vectors as co-factors are the appropriate compo-
nents. Help: [S-16]

¤ Use the determinant method to show that x̂× ŷ = ẑ. Help: [S-12]

¤ Given ~A = 5x̂ − 2ŷ and ~B = x̂ + ŷ + 3ẑ), show that ~A × ~B = −6x̂ −
15ŷ + 7ẑ. Help: [S-13]

5e. Representing a Vector by Magnitude and Direction. It is
often convenient to to write a vector as the product of a single magnitude
and a single direction rather than as the sum of its Cartesian Components.
First we define the magnitude of a vector:

A ≡ | ~A| =
√

A2
x +A2

y +A2
z . (15)

Note that the magnitude it always positive. Next we define a unit vector
that is in the direction of the vector we are representing:

Â =≡
~A

| ~A|
. (16)
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Note that Â has unit length because we have divided ~A by its own length.
Then we can rewrite Eq. (16) to show the vector as the product of a mag-
nitude and a direction, which is entirely equivalent to the representation
of the vector in Cartesian components:

~A = AÂ = Axx̂+Ay ŷ +Az ẑ . (17)

Finally, we write the magnitude and direction of the vector product ~C of
two vectors ~A and ~B in terms of the magnitudes and directions of ~A and
~B. First, the magnitude is:

C =
[

(AyBz −AzBy)
2 + (AzBx −AxBz)

2 + (AxBy −AyBx)
2
]1/2

= AB sin θ ,
(18)

where θ is the counter-clockwise angle between the directions of ~A and
~B. The direction of the vector product is:

Ĉ =
~C

C
=

~A× ~B

| ~A× ~B|
=

(AyBz −AzBy)x̂+ . . .

[(AyBz −AzBy)2 + . . .]
1/2

. (19)
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MISN-0-2 PS-1

PROBLEM SUPPLEMENT

Note: problems 13 (part), 21, and 22 (part) also occur in this module’s
Model Exam.

1.

A

B

C
`

`

`

Three vectors, ~A, ~B, and ~C, all in a plane, are shown sketched above.
By arranging the vectors in head-to-tail fashion, sketch:

a. ~A+ ~B, to which then add ~C;

b. ~A+ ~C, to which then add ~B;

c. ~B + ~C, to which then add ~A;

d. ~A− ~B.

2. Write down the ordered triad of numbers which represents a vector
of length 6 units and that lies along the y-axis of a fixed coordinate
system.

3. Write down the ordered triad of numbers which represents a vector of
length 6 units that lies in the xy-plane, making an angle of 30◦ with
the x-axis.

4. Express the vectors in problems 2 and 3 above in terms of the fixed
unit vectors along the Cartesian axes.

5. A particular vector is given as a zero or null vector. Write down the
triad that represents this vector.

6.

B

A

y

x

`

`

| ~A| = 4units, | ~B| = 5units, directions as in the sketch.
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a. Graphically add ~A and ~B.

b. Compute the magnitude of the resultant.

c. Determine the direction of the resultant, expressed as:

(i) The angle between the vector and the positive x-axis, measured
counter-clockwise from the positive x-axis; this is the standard
representation of a vector’s direction.

(ii) The angle between the vector and the positive y-axis, measured
clockwise from the positive y-axis; this is a compass bearing if
the positive y-axis represents due north and the positive x-axis
represents due east.

7.
y

x

C

B

A

f

q

`

`

`

| ~A| = 4units, | ~B| = 3units, θ = 30◦, | ~C| = 5units, φ = 60◦ (see
sketch).

a. Express ~A, ~B, and ~C in component form. Help: [S-15]

b. Using these components, evaluate ~A+ ~B + ~C.

c. Similarly, evaluate ~A+ ~B − ~C.

8. A vector of unit length, x̂, is parallel to the x-axis of a Cartesian
coordinate system while another vector of unit length, ŷ, is along the
y-axis. Evaluate the scalar products x̂ · x̂, x̂ · ŷ, and ŷ · ŷ.

9. Expressing two vectors in terms of unit vectors along the coordinate
axes, ~A = Axx̂+Ay ŷ+Az ẑ and ~B = Bxx̂+By ŷ+Bz ẑ, show that the
scalar product may be written as AxBx + AyBy + AzBz (use results
that you got in problem 8, above.)

10. Consider two vectors, ~A = 4x̂ + 3ŷ and ~B = 5x̂ − 12ŷ. Find: (a) the

length of ~A starting from the definition of the scalar product; (b) the

length of ~B; and (c) the angle between ~A and ~B.
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11.

B

C

A

y

x

`

`

`

Assuming magnitudes (see sketch) | ~A| = | ~B| = | ~C| = R, evaluate the
following in terms of R:

a. ( ~A× ~B)× ~C

b. ( ~B × ~A)× ~C

c. ~A× ( ~B × ~C)

d. ~C × ( ~A× ~B)

12.
y

x

B
`

A
`

Given the vectors ~A and ~B:

a. Sketch the graphical representation of the vector sum of ~A and ~B
using the head-to-tail addition method.

b. Using the geometrical definition of the scalar product, prove the
Law of Cosines for the triangle formed by the above vector sum,

i.e.;
C2 = A2 +B2 − 2AB cos γ ,

where C is the magnitude of ~C, the sum ~A+ ~B, γ is the angle oppo-
site side C in the triangle ABC, and A and B are the magnitudes
of ~A and ~B, respectively. Help: [S-14]
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c. Use the definition of the magnitude of the vector product to prove
the Law of Sines for the same triangle, i.e.;

sinα

A
=

sinβ

B
=

sin γ

C

where α, β and γ are the angles of the triangle that are opposite
sides A, B and C.

13. A vector ~R has its tail at the origin and its head at the point (2, 5, -3).

Another vector ~S has its tail also at the origin, while its head is at the
point (2, -5, 0).

a. How long is the y-component of ~R?

b. How long is the y-component of ~S?

c. What are the coordinates of the head of the vector (- ~R)?

d. What are the coordinates of the head of the vector (or, stated more

simply, the coordinates of the vector) ~R + ~S?

e. What are the coordinates of the vector ~R - ~S?

f. What is the length of the vector ~R + ~S?

g. What is the length of the vector ~S - ~R?

h. What is the length of the vector ~R?

14. Express vector ~R (of problem 13 above) as a single sum of components
along the coordinate axes in terms of the unit vectors along those axes.7

15. Similarly express the vector 3~S.

16. Do the same for the vector 3 ~R− 2~S.

17. What angle does the vector ~R+ ~S make with the z-axis?

18. What angle does the vector ~R− ~S make with the x-axis?

19. What is the cosine of the angle between the vector ~R and the y-axis?

20. Vector ~R has its tail at the origin of the coordinate system, while its
head is at the point (2, 5, −3). Vector ~S likewise has its tail at the
origin of the coordinate system, while its head is at point (2, −5, 0).
7Authors use various notations for Cartesian unit vectors. We use x̂, ŷ and ẑ for

unit vectors along the x-, y-, and z-axes, which is a commonly used notation. Some
authors have used: î, ĵ, k̂; ê1, ê2, ê3; and ûx, ûy , ûz . All such sets are equivalent.
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a. What is the value of ~R · ~S?
b. Using the result of (a), find the angle between the vectors ~R and ~S.

c. Evaluate the magnitude of the vector ~R× ~S, using the result of (b).

21. Vector ~T is 4 units long and directed along the x-axis. Vector ~V is
6 units long and is directed along the z-axis.

a. What is the direction of the vector ~T × ~V ?

b. What is the magnitude of the vector ~T × ~V ?

c. Express ~T × ~V in terms of the unit vectors along the coordinate
axes.

22. Evaluate:

a. x̂× ẑ

b. ŷ · ẑ
c. ẑ × ẑ

d. ŷ × ẑ

e. x̂ · x̂
f. x̂× ŷ
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Brief Answers:

1.

A
`

A
`

A
`

A
`

B
`

B
`

B
`

- B
`

C
`

C
`

C
`

A + B + C
` ` `

A + B + C
` ` `

A + B + C
` ` `

A + B
` `

B + C
` `

A - B
` `

A + C
` `

(a)

(c)

(b)

(d)

2. (0, 6, 0)

3. (3
√
3, 3, 0)

4. ~A = 6ŷ, ~B = 3
√
3x̂+ 3ŷ

5. (0, 0, 0)
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6. a. ~C = resultant:

BC

A

y

x

` `

`

b. | ~C| = 6.4 units

c. (i) 51◦ or 0.90 rad

(ii) 39◦ or 0.67 rad

7. a. ~A = 4x̂, ~B = 2.60x̂+ 1.5ŷ), ~C = 2.5x̂+ 4.3ŷ)

b. ~S = ~A+ ~B + ~C = 9.1x̂+ 5.8ŷ

c. ~D = ~A+ ~B − ~C = 4.1x̂− 2.8ŷ

8. x̂ · x̂ = 1, x̂ · ŷ = 0, ŷ · ŷ = 1

10. | ~A| = 5, | ~B| = 13, θ = 104◦

11. a. ( ~A× ~B)× ~C = R3x̂

b. ( ~B × ~A)× ~C = −R3x̂

c. ~A× ( ~B × ~C) = 0

d. ~C × ( ~A× ~B) = −R3x̂

12. a.
y

x

B
C

A

`
`

`

13. a. 5 units

b. 5 units

c. (−2, −5, 3)
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d. (4, 0 − 3)

e. (0, 10, −3)
f. 5 units

g.
√
109 = 10.44 units

h.
√
38 = 6.16 units

14. 2x̂+ 5ŷ − 3ẑ

15. 6x̂− 15ŷ

16. 2x̂+ 25ŷ − 9ẑ

17. 127◦

18. π/2

19. 0.811

20. a. −21 units
b. 129.2◦

c. 25.71 units

21. a. along negative y-axis

b. 24 units

c. −24ŷ
22. a. −ŷ

b. 0

c. 0

d. x̂

e. 1

f. ẑ
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from TX-1b)

Using a ruler, we find the ~F vector to be 0.5 in long so F = 10 lb/in ×
0.5 in = 5 lb.

S-2 (from TX-2b)

The easiest way is to put a sheet of paper over Fig. 2 and put both
sheets together against a window pane that is illuminated mainly from
the other side. Trace the first resultant onto the clean sheet, then slide
it over to the other resultant and see if the magnitude and direction are
identical (up to your ability to trace and compare visually).

S-3 (from TX-2c)

In Fig. 3, measure A, B, and R with a ruler and measure the angles
θ and φ with a protractor. Then use your calculator to finish the job,
making sure you have set it for the proper choice of radians or degrees.

S-4 (from TX-3b)

The magnitude of one or both is zero.

S-5 (from TX-3b)

R =
[

( ~A+ ~B) · ( ~A+ ~B)
]1/2

=
(

A2 +B2 + 2 ~A · ~B
)1/2

S-6 (from TX-4a)

We find: Ax = 1.00 inches, Ay = 0.75 inches.

S-7 (from TX-4b)

(1, 0, 1) + (0, 1,−1) = (1, 1, 0)
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S-8 (from TX-4c)

(1, 0, 1)− (0, 1,−1) = (1,−1, 2)

S-9 (from TX-4d)

(1, 0, 1) · (0, 1,−1) = 1 · 0 + 0 · 1 + 1 · (−1) = −1

S-10 (from TX-4e)

(1, 0, 1)× (0, 1,−1) = (−1, 1, 1)

S-11 (from TX-5a)

Use the “right hand” rule or the “screw” rule. You could also work with
components: x̂ = (1, 0, 0), ŷ = (0, 1, 0), and ẑ = (0, 0, 1). Then, for
example, the x-component of x̂× ŷ is: (x̂× ŷ)x = (x̂)y(ŷ)z − (x̂)z(ŷ)y =
0 · 0− 0 · 1 = 0.

S-12 (from TX-5b)

x̂× ŷ =

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
(x̂)x (x̂)y (x̂)z
(ŷ)x (ŷ)y (ŷ)z

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
1 0 0
0 1 0

∣

∣

∣

∣

∣

∣

S-13 (from TX-5b)

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
5 −2 0
1 1 3

∣

∣

∣

∣

∣

∣
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S-14 (from PS, problem 12b)

If you get
C2 = A2 +B2 + 2AB cos γ

then you did not pay attention to the definition of γ in the statement of
the problem. The definition of γ is taken from the usual statement of
the relationship between two sides and the included angle in a triangle.

If you do not know how to obtain cos(π − γ) from cos(γ), see “trigono-
metric functions” in this volume’s Index.

S-15 (from PS, problem 7a)

Look at the figure in the problem statement. To find Cx, drop a vertical
line from the tip of ~C to the x-axis, so the line is perpendicular to the
x-axis. Label this line Cy and label the x-axis from the origin out to
this line Cx. Notice the right-angle triangle formed by the three lines
C, Cx, and Cy (the vertical line down from the tip of ~C). You know the
values of C and φ so simply apply trigonometry to find Cx. If you don’t
remember how, see “trigonometric functions” in this volume’s Index.

S-17 (from TX-5c)

You can show it any of three ways. We suggest that you do all three
and then choose the method that suits you best. The ways are: (1) by

expanding | ~A × ~B| and | ~B × ~A| in Cartesian components and showing
that the two are equal (the absolute magnitude of a vector is given
in Eq. (13)); or (2) by showing that the answer is unchanged if you

interchange ~A and ~B in Eq. (4); or (3) by taking the absolute magnitude

of each side of ~A× ~B = − ~B× ~A, in which case the absolute magnitude of
the right side deletes the over-all minus sign and the proof is complete.
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S-18 (from TX-5c)

You can show it either of two ways. We suggest that you do both and
then choose the method that suits you best. The ways are: (1) by
expanding the cross-products in Cartesian components; or (2) by using

the fact that ~A × ~B has the same magnitude as ~B × ~A (see S-17 )),
in which case the two can differ only by direction, and then using the
“tight-hand rule” or the “screw” rule to show that the direction of either
one is opposite to that of the other.
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MODEL EXAM

1. See Output Skills K1-K6 in this module’s ID Sheet. One or more of
these skills, or none, may be on the actual exam.

2. A vector ~R has its tail at the origin and its head at the point (2, 5, -3).

Another vector ~S has its tail also at the origin, while its head is at
the point (2, -5, 0).

a. What is the length of the vector ~R + ~S?

b. What is the length of the vector ~S - ~R?

c. What is the length of the vector ~R?

3. Vector ~T is 4 units long and directed along the x-axis. Vector ~V is
6 units long and is directed along the z-axis.

a. What is the direction of the vector ~T × ~V ?

b. What is the magnitude of the vector ~T × ~V ?

c. Express ~T × ~V in terms of the unit vectors along the coordinate
axes.

4. Evaluate:

a. x̂× ẑ

b. ŷ · ẑ
c. ẑ × ẑ

d. ŷ × ẑ

e. x̂ · x̂
f. x̂× ŷ

Brief Answers:

1. See this module’s text.

2-4. See problems 13, 21, and 22 in this module’s Problem Supplement.
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