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LENGTH CONTRACTION AND TIME DILATION
by

P. Signell, J. Borysowicz, and M. Brandl, Michigan
State University

1. Overview

The measured length of a moving object is always found to be short-
ened and the rate of a moving clock is found to be decreased. These effects
are derived from the Lorentz transformation and are applied to physical
systems. The symmetry of the Lorentz transformation is used to show
the reasoning behind the simple form of the “twin paradox.”

2. Length Contraction & Time Dilation

2a. The Length-Measurement Problem. The measurement of the
length of an object which is traveling past you at high speed is not trivial.
You should put a stationary meter stick ahead of the object, parallel to
its future path of travel. Then, when the object is alongside the meter
stick, you must note the positions of the two ends simultaneously (just
think of what would result otherwise). Subtracting the two end-position
readings would give you the length (see Fig. 1).

2b. One Event in Two Frames. If an observer in one reference
frame, A, and an observer in another reference frame, B, each measures
the position and time of an event O, the position and time measurements

1For fifty years, physicists believed and taught that an object traveling past at high
speed would appear physically distorted (“Lorentz contracted”). Then Terrell showed
how it would really look. See “Appearances at Relativistic Speeds” (MISN-0-44).

v
Figure 1. Defining an ob-
ject’s “length in the direction
#2edge #1edge of travel.”
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in the two frames are related by the Lorentz transformation:
rop(tor) = k[roa(toa) —vpatoal (1)

top = kltoa —vBazoa(toa)/c’] (2)
where
k=[l—vpa/]V2.

In our current case, zpa(toa) might refer to the location of one end of
our? object as measured in the Lab frame at a particular Lab time. We say
that the object is moving with respect to a Laboratory frame of reference
L, and our task is to measure the moving object’s length in its direction
of motion, first in the Lab frame and then in a frame of reference which
is moving along with the object. Since the object is at rest in the latter
frame, that frame is called the object’s Rest frame R.

2c. Derivation of the Length Contraction Factor. We label the
leading edge of the object #1 and the trailing #2, as in the diagram.
Then the Lab frame end-measurements are related to the Rest frame
end-measurements by:

zir(tir) = krr[zin(tin) — vee tiz]

zor(tar) = krp[rer (ter) — vRL tor] -
As discussed in Sect. 2a, the Lab frame end-measurements must be simul-
taneous,
tir = tar,

because the object is moving. Subtracting the second equation from the
first and using the simultaneity of measurement in the Lab frame,

z1r(tir) — z2r(ter) = krrlrin(tr) — zar (tr)],
where t, is the single time of measurement in the Lab.

Now in the Rest frame the object is not moving so measurements of
the positions of the ends are independent of time, enabling us to write:

1R — Z2r = krr[z1L — 22r].

Each of the above differences is the length as measured in the indicated
frame and so we finally obtain:

lor = krilor .

2The notation conventions are given in “Special Relativity: The Lorentz Transfor-
mation and the Velocity Addition Law” (MISN-0-12).
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This is usually written the other way around:
lor, = (1= vk /) Lok (3)

Thus a moving object will always be measured to be shorter in the direc-
tion of travel than it will be when at rest and this length contraction is
called the “Lorentz contraction.”

2d. Derivation of the Time Dilation Factor. Now suppose we
measure a time interval between two events. For concreteness we will
follow a cosmic ray pion (“pi’-on”), denoted 7, from its time of creation
at time ¢1 in the upper atmosphere to the end of its lifetime at time ¢5 near
the earth’s surface. Our two frames of reference are the Rest frame of the
m and the Lab frame which is stationary on the surface of the earth. We
wish to compare the lifetimes of the m as observed from the two frames.
From Eq. (2),

tir, = krr[tir — vir z1r(tiR) /] 4)

tar, = krgr[tar — VLR T2r(t2R) /] .- (5)

To an observer in the Rest frame of the 7, and 7 is not moving so its
creation and annihilation are at the same space point:

r1r(tir) = 22r(t2R) - (6)
Subtracting (4) from (5) and using (6) gives:
tor, —tir = krr(tar — tir) -

Since the time difference to — ¢1 is the lifetime 7 of the pion, we finally
get,
L =krp=(1—-02/32)"Y21p.

If there is a frame of reference R in which two events occur at the same
space point, that will be the frame in which the measured time interval
between the events will be the smallest. Measured values by other ob-
servers will be larger by the factor k, and this is called the “time dilation”
effect. Thus all slowly moving pions appear to have about the same life-
time while those moving at speeds near that of light appear to live longer,
exactly in accordance with the factor k.

One can say that the fast moving pion appears to age more
slowly!
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3. The “Twin Paradox”

3a. The Paradox. The “twin paradox” refers to the differential aging
of a set of twins, one of whom goes away on a space trip and eventually
returns to earth. The twin who stayed at home is seen to be much older
than the one who took the journey. You may or may not feel that this is
truly a “paradox” but that is what it is called.

3b. A’s Space-time Point. The Lorentz transformation is indepen-
dent of which frame is considered to be the moving one.

From twin A’s point of view, twin B is moving with velocity vp4 so
that:

zoB(tor) = k[roa(toa) —vBatoa) (7)

top = k[toa —vparoa(toa)/c’]. (8)

However, from B’s viewpoint, A is moving and has velocity vap = —vpa.
Hence we have:

zoA(toa) = klzos(tos) + vBatos] 9)

toa = kltop + vpazon(tos)/c*]. (10)

Equations (9) and (10) are exactly equivalent to Egs. (7) and (8). We
show the equivalence by deriving Egs. (7) and (8) from Egs. (9) and (10).

3c. B’s Space Point. Solving Eq. (10) for top gives,
top = k™ 'toa —vpazon(ton)/c*. (11)
Substituting Eq. (11) into Eq. (9) gives,

zoa(toa) = klzop(tos) + vpa(k™" toa — vpazos(tor)/c’]
= k[k " vpatoa + zoB(tos)(1 — vha/c?)]

=klk™"vpatoa + k*zog(tos)].

zoa(toa) =vpatoa +k 'zop(tos) (12)

Solving Eq. (12) for xop gives Eq. (7):

zop(to) = k[roa(toa) — vBatoa].
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3d. B’s Event Time. We can similarly obtain Eq. (8) from Egs. (9)
and (10). We first solve Eq. (9) for zop(tos):

zop(top) =k 'zoa(toa) — vpatos. (13)

Then we use Eq. (13) to eliminate zop(top) from Eq. (10), and obtain:

toa = k{top +vpalk 'zoa(toa) — vpaton]/c*}
= k[top(1 —vh /) + k" vpazoa(toa)/c’]

= klk*top + k™ 'vpazoa(toa)/c’]

toa =k "top +vpazoa(toa)/c? (14)

Solving Eq. (14) for top gives Eq. (8):

top = k[toA - UBA«TOA(tOA)/C2]'

3e. Time Interval Symmetry. Since the Lorentz transformation is
symmetric for A < B (with vps < —vp4), all general results have that
same symmetry. Thus if A sees B’s clock running slower, B must see A’s
clock running slower. If A and B are otherwise the same (“twins”) each
sees the other age less rapidly. Thus twin A should see B as the younger
and twin B should see A as the younger. Hence the paradox: how can each
see the other as younger? Note, however, that in our derivation the twins
could never come back together to compare their ages in the same frame
of reference; we had no “turning around” or “stopping.” The question of
what would happen if one twin turned around, came back, and stopped
by the other one, is not answered by Special Relativity: it has nothing to
say about what happens during accelerations. For that one must go to
the much more complex General theory of Relativity.?
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3See “The Equivalence Principle: An Introduction to Relativistic Gravitation”
(MISN-0-110).
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PROBLEM SUPPLEMENT

Problem 4 also occurs in this module’s Model Exam.

1. A neutral pion, 7°, has a lifetime of 8.4 x 1017 sec in its own rest frame
before decaying into two photons. However in a laboratory experiment,
where the pions are observed to be moving, their lifetime is measured
to be 4.2 x 10~ % sec. Assuming this discrepancy to be due to time
dilation, calculate the speed of the pions.

2. “There was a young fencer named Fisk, whose style was incredibly
brisk. So fast was his action, that Lorentz space contraction foreshort-
ened his foil to a disk.” Assuming his 1.00m long fencing foil only
contracted to 10.0 cm (roughly the size of a good steak knife), how fast
was Fisk lunging?

3. At the moment of the birth of a set of twins, one child is placed in a
spaceship that rapidly accelerates to 0.866 ¢ (0.866 times the speed of
light), and travels to Alpha Centauri, 4.33 light years away (measured
in the rest frame of the earth.)

a. Calculate the age of each twin when the traveler reaches Alpha
Centauri, as measured by the twin on earth.

b. Calculate the distance from Alpha Centauri to earth, as measured
by the traveling twin.

c. How old is the traveling twin, as measured by himself, when he
reaches Alpha Centauri?

d. How old does the traveling twin perceive the earthbound twin to
be?

4. Suppose you have a twin who is an astronaut. The twin travels at
speed 0.9999 ¢ to the vicinity of a star which is 60light years away
from earth (one light year is the distance light travels in one year).

a. Find your age and your twin’s age at the time you observe that your
twin reaches the star.

b. Show that the length, time and velocity observed by your twin
check.

10
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Brief Answers:

MODEL EXAM

1. v=0.98c
2. v=10.995c¢
3. a. Age of stationary twin: 5yrs.; Age of traveling twin: 2.5yrs. zoB(tB) = k[roa(ta) — vBa tA]
b. 2.165light years
c. 2.5yrs. tg = k[ta — va zoa (ta)/c?]
d. 1.25yrs.
4. a. Present age +60.006 yr., present age +0.85 yr. k=[1— U%A/Cz]—1/2
Twin observes distance of 0.848507 light years, time of 0.84859 yr.,
velocity of —0.9999 c. 1. See Output Skills K1-K3 in this module’s ID Sheet.

b. Then (0.848507/0.84859) ¢ = 0.9999 c: check. . ) )
2. Suppose you have a twin who is an astronaut. The twin travels at

speed 0.9999c¢ to the vicinity of a star which is 60 light years away
from earth (one light year is the distance light travels in one year).

a. Find your age and your twin’s age at the time you observe that your
twin reaches the star.

b. Show that the length, time and velocity observed by your twin
check.

Brief Answers:

1. See text of Module.

2. See this module’s Problem Supplement, problem 4.

11 12



